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SUMMARY

As much of the focus of genetics and molecular biology has shifted toward the systems level, it has
become increasingly important to accurately extract biologically relevant signal from thousands of re-
lated measurements. The common property among these high-dimensional biological studies is that the
measured features have a rich and largely unknown underlying structure. One example of much recent
interest is identifying differentially expressed genes in comparative microarray experiments. We propose
a new approach aimed at optimally performing many hypothesis tests in a high-dimensional study. This
approach estimates the optimal discovery procedure (ODP), which has recently been introduced and theo-
retically shown to optimally perform multiple significance tests. Whereas existing procedures essentially
use data from only one feature at a time, the ODP approach uses the relevant information from the entire
data set when testing each feature. In particular, we propose a generally applicable estimate of the ODP
for identifying differentially expressed genes in microarray experiments. This microarray method consis-
tently shows favorable performance over five highly used existing methods. For example, in testing for
differential expression between two breast cancer tumor types, the ODP provides increases from 72% to
185% in the number of genes called significant at a false discovery rate of 3%. Our proposed microarray
method is freely available to academic users in the open-source, point-and-click EDGE software package.
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1. INTRODUCTION

The problem of identifying genes that are differentially expressed across varying biological conditions
based on microarray data has been a problem of much recent interest (Cui and Churchill, 2003). It is
now possible to simultaneously measure thousands of related variables or “features” in a variety of bi-
ological studies. Many of these high-dimensional biological studies are aimed at identifying features
showing a biological signal of interest, usually through the application of large-scale significance test-
ing. For example, significance analyses are often performed in DNA microarray, comparative genomic
hybridization, genome-wide comparative genomics, protein array, mass spectrometry, and genome-
wide association studies (Cui and Churchill, 2003; Sebastiani and others, 2003; Wang and others, 2005).
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In many of these applications, the true biological signals of interest across the features are expected to be
related. This motivates investigating approaches to large-scale testing that take advantage of widespread
structure in high-dimensional data.

We propose a new approach for performing simultaneous significance tests on many features in a
high-dimensional study. This approach is based on the “optimal discovery procedure” (ODP), recently
developed from a theoretical perspective (Storey, 2005; Storey and others, 2005a). The ODP was shown
to be optimal in that it maximizes the expected number of true positives (ETP) for each fixed level of
expected false positives (EFP); this is also directly related to optimality in terms of the popular false
discovery rate (FDR). Here, we introduce approaches to estimating the ODP in practice, and we pro-
pose a fully developed method for identifying differentially expressed genes in comparative microarray
experiments.

In a microarray study, there is very often pervasive asymmetry in differential expression that is not due
to chance. Indeed, it would seem unlikely that overall differential expression would be symmetric, unless
the experiment was designed to achieve this behavior. Asymmetric differential expression is an example
of the existence of an underlying structure present among thousands of features in a high-dimensional bio-
logical study. Due to the pathway structure of gene expression regulation, the expression measurements of
genes are related at an even finer scale, which yields further structure in observed differential expression.

A procedure for identifying differentially expressed genes should take advantage of this structure, the
same holding true for other high-dimensional biological studies, where much structure in signal is present.
The ODP approach does exactly this, utilizing the relevant information from the entire data set in testing
each gene for differential expression. The commonly used statistics in high-dimensional studies, such
as the t-statistic, F-statistic, or the chi-square statistic, were originally designed for performing a single
significance test. Whereas these statistics are formed using information from only one feature at a time,
the ODP takes advantage of the structure in high-dimensional data.

There are two steps implicitly required for performing large-scale significance testing in high-
dimensional biological studies: (1) order the features from those showing the most signal of interest
to those showing the least and (2) assign a significance level to each feature, allowing one to draw a sig-
nificance cutoff somewhere along this ordering. As an example, the significance analysis of a microarray
study involves ranking the genes from most differentially expressed to least (the first step), and then draw-
ing a significance cutoff based on, say, an estimate of the FDR (the second step). This paper is focused
on the first step, namely estimating an optimal ordering of the features. The second step, which is not
developed in this paper, has been addressed with new significance measures for high-dimensional studies,
such as the FDR (Storey and Tibshirani, 2003).

Estimating the ODP in practice requires the development of a number of ideas beyond those consid-
ered in the more theoretical setting of Storey (2005), which we illustrate through the microarray appli-
cation. For example, whereas a t-statistic automatically cancels out ancillary information in testing for
differential expression, certain approaches to estimating the ODP do not. Therefore, steps must be taken
so that such ancillary information has no effect on the significance results. Here, we introduce a general
set of methodology that overcomes a number of these challenges.

We demonstrate the proposed ODP approach for identifying differentially expressed genes on a well-
known breast cancer expression study Hedenfalk and others (2001), as well as on simulated data. We
compare the results to those from five leading differential expression methods (Tusher and others, 2001;
Kerr and others, 2000; Dudoit and others, 2002; Cui and others, 2005; Efron and others, 2001; Lonnstedt
and Speed, 2002). Our method consistently shows substantial improvements in performance over these ex-
isting methods. For example, in testing for differential expression between BRCA1 and BRCA2 mutation-
positive tumors, the ODP approach provides increases from 72% to 185% in the number of genes called
significant at a 3% FDR. A comparison between the methods over a range of FDRs is shown in Figure 2
and Table 1.
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Table 1. Improvements of the ODP approach over existing thresholding methods. Shown are the minimum,
median, and maximum percentage increases in the number of genes called significant by the proposed
ODP approach relative to the existing approaches among FDR levels 2%, 3%, . . . , 10%. The exact same
FDR methodology (Storey, 2002; Storey and Tibshirani, 2003) was applied to each gene-ranking method
in order to make the comparisons fair. The model-based Bayesian method (Lonnstedt and Speed, 2002) is

not defined for a three-sample analysis, so that case is omitted

Thresholding method % Increase by ODP—two-sample % Increase by ODP—three-sample

Minimum Median Maximum Minimum Median Maximum

SAM (Tusher and others, 2001) 29 43 72 76 92 211
t/F-test (Dudoit and others 2002,

Kerr and others, 2000) 52 86 185 63 82 407
Shrunken t/F-test (Cui and others, 2005) 34 52 77 61 69 154
Bayesian local FDR

(Efron and others, 2001) 58 87 117 76 92 211
Posterior probability

(Lonnstedt & Speed 2002) 44 60 113 — — —

2. THE ODP

2.1 Optimality goals

The typical goal when identifying differentially expressed genes is to find as many true positives as pos-
sible, without incurring too many false positives (Storey and Tibshirani, 2003). Sometimes genes found
to be significantly differentially expressed are subsequently studied on a case-by-case basis in order to
determine their role in the differing biological conditions. It is also now possible to discover functional re-
lationships among significant genes based on a number of ontological databases, making this an attractive
and more frequently used follow-up investigation technique (Zhong and others, 2004).

Because of these goals in microarray experiments and a variety of other high-dimensional biological
applications, the FDR has emerged as a popular criterion for assessing significance in high-dimensional
biological studies (Storey and Tibshirani, 2003). The FDR is defined to be the proportion of false positives
among all features called significant (Soric, 1989; Benjamini and Hochberg, 1995). For example, if 100
genes are called significant at the 5% FDR level, then one expects 5 out of these 100 to be false positives.
When investigating the functional relationships of a set of significant genes, the FDR has the nice inter-
pretation that it represents the level of “noise” present in the genes used to draw conclusions about the
functional relationships.

Instead of working directly with FDRs, the ODP is based on two more fundamental quantities: ETP
and EFP. Specifically, the ODP is defined as the testing procedure that maximizes the ETP for each fixed
EFP level. Since FDR optimality can be written in terms of maximizing the ETP for each fixed EFP level
(Storey, 2005), the ODP also provides optimality properties for FDR. A consequence of this optimality is
that the rate of “missed discoveries” is minimized for each FDR level. In fact, the optimality properties
of the ODP translate to a variety of settings, including misclassification rates (Storey, 2005). The ODP
optimality can also be formulated as a multiple test extension of this Neyman–Pearson optimality (Storey,
2005).

As rigorously described in Storey (2005), the ODP optimization is carried out among all single-
thresholding procedures (STPs). The ODP statistic defined next is called a “significance thresholding
function” in Storey (2005) because it acts as a function applied to each test, where a numerical threshold
is then applied to these in order to call the tests significant. An STP is simply a procedure where a single
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significance thresholding procedure is used for all tests, or more simply, one where a common formula is
employed for each test’s statistic. Any method invariant to the labeling of the tests is an STP; all existing
methods considered in this paper are STPs.

2.2 ODP statistic

The ODP is very much related to one of the fundamental ideas behind individual significance tests: the
Neyman–Pearson lemma. Given a single set of observed data, the optimal single-testing procedure is
based on the statistic

SNP(data) = probability of the data under the alternative distribution

probability of the data under the null distribution
.

The null hypothesis is then rejected if the statistic SNP(data) exceeds some cutoff chosen to satisfy an
acceptable Type I error rate. (Here, the larger the statistic is, the more significant the test is.) This Neyman–
Pearson procedure is optimal because it is “most powerful,” meaning that for each fixed Type I error rate,
there does not exist another rule that exceeds this one in power. The optimality follows intuitively from
the fact that the strength of the alternative versus the null is assessed by comparing their exact likelihoods.

The ODP statistic may be written similarly to the NP statistic. However, instead of considering the
data evaluated at their own alternative and null probability density functions, the ODP considers the data
for a single feature evaluated at all true probability density functions. Let “datai ” be the data for the i th
feature being tested. The ODP statistic for feature i is calculated as

SODP(datai ) = sum of probability of datai under each true alternative distribution

sum of probability of datai under each true null distribution
. (2.1)

For a fixed cutoff chosen to attain an acceptable EFP level (or FDR level), each null hypothesis is rejected
if its ODP statistic SODP(datai ) exceeds the cutoff. Note that datai has been evaluated at all true probability
densities, thereby using the relevant information from the entire set of features. For each feature’s data,
evidence is added across the true alternatives and compared to that across the true nulls in forming the
ratio.

Figure 1 gives a graphical representation of the ODP statistic and its relative behavior to the NP
statistic. It can be seen there that the difference between the two is that the ODP borrows strength across
all the tests, as opposed to using information from only one test at a time. This point is explored in depth
in Storey (2005). In the supplementary material available at Biostatistics online, we provide a toy example
showing how microarray data contain information shared across genes that can be utilized by the ODP.
The NP procedure and ODP are theoretical procedures that must be estimated in practice. As it turns
out, the estimated ODP may show favorable operating characteristics over estimated NP procedures when
testing many hypotheses, as we demonstrate in this article.

2.3 Mathematical formulation

To make the definition of the ODP statistic more precise, suppose that m significance tests are performed
on observed data sets x1, x2, . . . , xm , where each significance test consists of n observations so that each
xi = (xi1, xi2, . . . , xin). For the microarray application that we consider, xi j is the relative expression
level of gene i on array j . In this case, there are m genes tested for differential expression, based on n
microarrays.

Assume that significance test i has null probability density function fi and alternative density gi ;
without loss of generality suppose that the null hypothesis is true for tests i = 1, 2, . . . , m0 and the



418 J. D. STOREY AND OTHERS

Fig. 1. Plots comparing the NP testing approach to the ODP testing approach through a simple example. (a) NP
approach. The null (gray) and alternative (black) probability density functions of a single test. For observed data
x and y, the statistics are calculated by taking the ratio of the alternative to the null densities at each respective
point. In this NP approach, the test with data y is more significant than the test with data x . (b) ODP approach. The
common null density (gray) for true null tests and the alternative densities (black) for several true alternative tests.
For observed data x and y, the statistics are calculated by taking the ratio of the sum of alternative densities to the null
density evaluated at each respective point. In this ODP approach, the test with data x is now more significant than the
test with data y because multiple alternative densities have similar positive means even though each one is smaller
than the single alternative density with negative mean. A color version of the figure is given in the supplementary
material available at Biostatistics online, Figure 8.

alternative is true for i = m0 + 1, . . . , m. In this notation, the ODP statistic of (2.1) is written as:

SODP(x) = gm0+1(x) + gm0+2(x) + · · · + gm(x)

f1(x) + f2(x) + · · · + fm0(x)
. (2.2)

Null hypothesis i is rejected if and only if SODP(xi ) � λ, where λ is chosen to satisfy an acceptable EFP
or FDR level. In practice, the exact forms of fi and gi are unknown, as well as which of the tests have
a true null hypothesis. Therefore, this statistic not only requires one to know the distributions associated
with each test but also whether the null or alternative is true for each test.

This seemingly nonsensical requirement turns out to be tractable when estimating the ODP. However,
it requires that we use a different but equivalent form of the statistic. The following equivalently defines
the ODP, as shown by Storey (2005):

SODP(x) = f1(x) + f2(x) + · · · + fm0(x) + gm0+1(x) + gm0+2(x) + · · · + gm(x)

f1(x) + f2(x) + · · · + fm0(x)
, (2.3)

which equals 1 + equation (2.2). Since equation (2.3) = 1 + equation (2.2), these produce the exact same
testing procedure (where a threshold of λ applied to the statistic defined in (2.2) is equivalent to a threshold
of 1 + λ applied to the statistic defined in (2.3)). Because of this equivalence and the tractability of
estimating the statistic in (2.3), we employ and estimate this statistic for the remainder of the article.

3. PROPOSED APPROACH FOR ESTIMATING THE ODP

Since the true ODP requires information not known in practice, the procedure must be estimated; here,
we propose some general methodology for doing so. The goal when estimating the ODP is to be able to
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reproduce the same ranking of features as the true ODP. Note that it is not necessary to reproduce the ODP
statistics exactly, but rather their relative ranking. In order to estimate the ODP statistic of (2.3), one must
estimate the true probability density function for each test and also address the fact that only the true null
tests are represented in the denominator of the statistic. The first challenge is straightforward to address:
we use the observed data for each test in order to estimate its true probability function. This is clearly
justified by the fact that the data are generated from that true density function. The second challenge can
be addressed in several ways, some of which we propose below.

3.1 A canonical plug-in estimate

A parametric approach can be taken to estimate the ODP, motivated by the generalized likelihood ratio
test for single significance tests. Recall that fi and gi will both be defined by a set of parameters (e.g. the
mean and variance of a normal distribution). For each test i = 1, . . . , m, let f̂i be the version of fi with all
the unknown parameters replaced by their maximum likelihood estimates under the constraints of the null
hypothesis and ĝi be the analogous estimate given by the unconstrained maximum likelihood estimates,
both based only on data xi . In single hypothesis testing, the Neyman–Pearson procedure for test i is
based on gi (xi )/ fi (xi ), and it can be estimated by the generalized likelihood ratio statistic ĝi (xi )/ f̂i (xi )
(Lehmann, 1986). Our proposed approach builds on this strategy.

For “true” null hypotheses i = 1, . . . , m0, the maximum likelihood parameters defining f̂i and ĝi

are both consistent estimates of the actual values of fi as the number of observations n grows to infinity.
Likewise, ĝi is composed of consistent parameter estimates of gi for false null hypotheses i = m0 +
1, . . . , m. Therefore, ĝ1 + · · · + ĝm can be used to estimate the numerator of (2.3), where it is now
unnecessary to be able to distinguish between true and false null hypotheses. This motivates the following
“canonical estimate” of the ODP statistic:

ŜODP(x) = ĝ1(x) + · · · + ĝm0(x) + ĝm0+1(x) + · · · + ĝm(x)

f̂1(x) + · · · + f̂m0(x)
. (3.1)

We use the term “canonical” because the above is a direct plug-in estimate of the ODP thresholding
function, where all unknown parameters are consistently estimated.

Consistency in the number of observations n for each test is not necessarily the best property to be
concerned about in this setting, since it will usually be the case that n � m; nevertheless, many of the
commonly used statistics (t, F, chi-square) can be motivated from this perspective, while also displaying
good small sample properites. Other well-behaved estimates of the fi and gi could certainly be employed
if they show favorable operating characteristics.

3.2 Common null distribution estimate

In general, it will not be possible to employ the canonical estimate because it requires one to be able to
identify the densities of the true null hypotheses. If a common null distribution f exists and is known,
then one does not need to know which of the null hypotheses are true. The canonical ODP estimate can
then be simplified to

ŜODP(x) =
∑m

i=1 ĝi (x)

f (x)
. (3.2)

Note that sometimes it is possible to transform the data so that the null distribution becomes known and
common among all tests (e.g. by replacing the data with a pivotal statistic). However, this may remove
much of the information in the data, making this approach less desirable. If there is no common and known
null distribution, then the following more generally applicable estimate is proposed.
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3.3 Generally applicable estimate

One general approach is to approximate the canonical plug-in estimate by estimating which null densities
should be included in the denominator of the statistic. Let ŵi = 1 if f̂i is to be included in the denominator,
and ŵi = 0 otherwise. The estimate of the ODP statistic is then

ŜODP(x) =
∑m

i=1 ĝi (x)∑m
i=1 ŵi f̂i (x)

. (3.3)

More generally, the ŵi can be thought of as weights serving as estimates of the true status of each hy-
pothesis. We have defined them as equaling zero or one, but they could take on a continuum of values as
well.

We propose and implement a simple approach to forming the ŵi for the microarray application below,
although many different approaches would be possible. This simple approach is based on ranking the
tests by using a univariate statistic (e.g. a t-statistic). For all statistics exceeding some cutoff (i.e. those
appearing to be significant and not likely to be true nulls), we set ŵi = 0; for those not exceeding the
cutoff, we set ŵi = 1. The cutoff is formed so that the proportion falling below and receiving ŵi = 1 is
equal to an estimate of the proportion of true null hypotheses, based on the method in Storey (2002) and
Storey and Tibshirani (2003).

Note that if the tests are consistent, then we expect the true alternative tests to rise above the cutoff with
probability one. The proportion of true null tests can be estimated unbiasedly in this case (Storey, 2002),
providing a reasonable method for extracting the true null densities to be employed in the denominator
of the statistic. Our particular version of this procedure, based on a Kruskal–Wallis test statistic and the
estimate of the proportion of true nulls by Storey (2002) and Storey and Tibshirani (2003), performs nearly
as well as the canonical estimate according to our simulations.

3.4 Nuisance parameter invariance

In addition to estimating the ODP well, it is also necessary to consider the effect of ancillary informa-
tion on the procedure. Specifically, it is desirable to obtain a “nusiance parameter invariance” property.
Suppose that all significance tests have equivalently defined null and alternative hypotheses and their
probability density functions all come from the same family. If the null distributions fi are not equal, then
this is due to differing nuisance parameters. However, simply changing the nuisance parameters of the
true null hypotheses can produce substantial (and sometimes undesirable) alterations in the ODP (supple-
mentary material available at Biostatistics online). A strong way to enforce nuisance parameter invariance
is to require all fi ’s to be equal. Alternatively, one may require that

∑m
i=1 fi/m = ∑m0

i=1 fi/m0 so that
on average there is no relationship between the status of the hypotheses and the null distributions. See
supplementary material available at Biostatistics online for a more detailed discussion on this important
property.

In practice, it is sometimes possible to formulate the significance tests or transform the data so that∑m
i=1 fi/m ≈ ∑m0

i=1 fi/m0. When this nuisance parameter invariance property is met,
∑m

i=1 f̂i/m may
serve as an estimate of

∑m0
i=1 fi/m0, yielding the following estimate of the ODP thresholding rule:

ŜODP(x) =
∑m

i=1 ĝi (x)∑m
i=1 f̂i (x)

, (3.4)

where the unknown constant m0/m can be omitted. However, it may also be difficult to estimate the fi for
true alternative tests since their data are in fact generated from the alternative density gi . In other words,
f̂i may be a poor estimate of fi for i > m0, making the denominator of (3.4) poorly behaved.
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4. ODP FOR IDENTIFYING DIFFERENTIALLY EXPRESSED GENES

For the microarray application, we found the implementation based on our general estimate of (3.3) to
perform the best. This implementation requires (1) fi and gi to be defined, (2) estimates f̂i and ĝi to be
derived, (3) an estimate of which f̂i to employ in the denominator to be derived, and (4) justification that
the nuisance parameter invariance condition

∑m
i=1 fi/m = ∑m0

i=1 fi/m0 is approximately met.
Some notation is necessary to describe the implementation. We assume expression is measured on m

genes from n arrays, where the n arrays come from one of two distinct groups. (The methodology easily
extends to there being one, two, or more groups—details are given below.) Let µi1 be the mean of gene
i in group 1, and µi2 be the mean of gene i in group 2, i = 1, . . . , m. When gene i is not differentially
expressed, these means are equal and we denote them by their common mean µi0. We denote xi j to be the
expression observation for gene i in array j , for i = 1, . . . , m and j = 1, . . . , n. As before, we represent
the data for a single gene by xi = (xi1, xi2, . . . , xin). Also, let xi1 be the subset of data from group 1 and
xi2 the subset of data from group 2. For example, with seven arrays in group 1 and eight in group 2, we
write xi1 = (xi1, xi2, . . . , xi7) and xi2 = (xi8, xi9, . . . , xi15).

4.1 Probability density functions

The model we use to estimate the ODP is that xi j comes from a normal distribution with mean µi1 or µi2
(depending on the group that array j belongs to) and variance σ 2

i . Note that this is only an assumption
insofar as claims are made about the accuracy of the estimated ODP with respect to the true ODP. We
do not make any distributional assumptions when assessing the level of statistical significance for each
feature. We assume that the expression measurements xi j are on the log scale or whatever scale makes the
use of the normal densities most reasonable.

Under this assumption, the likelihood of a set of data can be written using the normal probability
density function φ. For example, the likelihood of data x with mean µ and variance σ 2 is written as

φ(x; µ, σ 2) = 1

(2πσ 2)n/2
exp

{
−

∑n
j=1(x j − µ)2

2σ 2

}
.

In the notation used to define the general ODP estimates, we therefore define

fi (x) = φ(x; µi0, σ
2
i ) and gi (x) = φ(x1; µi1, σ

2
i )φ(x2; µi2, σ

2
i ).

For hypothesis i , the probability of data x is fi (x) under the null and gi (x) under the alternative.

4.2 Estimates of the densities

Ignoring nuisance parameter invariance issues, it is straightforward to define estimates of these densities.
Let (µ̂i0, σ̂

2
i0) be the maximum likelihood estimates under the constraints of the null hypothesis, and

(µ̂i1, µ̂i2, σ̂
2
i A) be the unconstrained maximum likelihood estimates. These are simply the sample means

and variances under the assumptions of the null and alternative hypotheses, respectively (supplementary
material available at Biostatistics online). The above densities can then simply be estimated by f̂i (·) =
φ(·; µ̂i0, σ̂

2
i0) and ĝi (·) = φ(·; µ̂i1, σ̂

2
i A)φ(·; µ̂i2, σ̂

2
i A). Below, we modify these density definitions and

estimates to approximately achieve nuisance parameter invariance.
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4.3 Extracting true null densities for the denominator

We also estimate which null densities should appear in the denominator of the statistic. The ultimate goal
is to recover the canonical estimate (3.3), where only f̂i corresponding to true nulls are present in the
denominator. We take the approach outlined in the Section 3.3, summarized in the following algorithm.

1. Perform a Kruskal–Wallis test for differential expression on each gene and rank the genes from most
differentially expressed to least according to this test.

2. Using the p-values from these tests, estimate the number of differentially expressed genes m̂0 ac-
cording to the methodology in Storey (2002) and Storey and Tibshirani (2003).

3. Set ŵi = 1 for the genes falling in the bottom m̂0 of the ranking; set ŵi = 0 otherwise.

A rank-based test is used mainly because it is computationally efficient. Furthermore, if a t-statistic
or F-statistic were used, then this runs the risk of preferentially selecting genes with small variances
by chance, a phenomenon previously noted about such statistics (Tusher and others, 2001). It should
be stressed that this is one of the many approaches one could take to estimating which null densities to
include in the denominator. We anticipate that better strategies will be found in the future. However, the
procedure proposed here does in fact show improvements over setting all ŵi = 1. Furthermore, at this
stage it is not necessarily so important to identify individual null genes well, but rather to identify a subset
so that

∑m
i=1 ŵi f̂i approximates

∑m0
i=1 fi well.

4.4 Nuisance parameter invariance

According to our notation, the null hypothesis for gene i is that µi1 = µi2 and the alternative is that
µi1 �= µi2. This can be rewritten as µi1 − µi2 = 0 versus µi1 − µi2 �= 0. Without loss of generality, the
common mean when the null hypothesis is true can be defined as µi0 = (n1µi1 +n2µi2)/n, where n1 and
n2 are the number of arrays in groups 1 and 2, respectively. The data for gene i can then be equivalently
parameterized by (µi0, µi1 − µi2, σ

2
i ) rather than (µi1, µi2, σ

2
i ). It is clear that the parameters µi0 and

σ 2
i are not of interest in the hypothesis test; these are the so-called nuisance parameters.

Recall that the goal is to approximately achieve the equality
∑m

i=1 fi/m = ∑m0
i=1 fi/m0. If (1) the

distribution of the σ 2
i is unrelated to the distribution of the µi1 − µi2 and (2) each µi0 = 0, then we can

approximately achieve the nuisance parameter invariance condition (supplementary material available at
Biostatistics online). Standard methods make it straightforward to transform the data so that there is no
apparent relationship between the σ 2

i and the µi1 − µi2 (Rocke and Durbin, 2003), so this condition
can often be fulfilled in practice. Ideally, we would force µi0 = 0 by subtracting the true µi0 from
each xi j for j = 1, . . . , n. However, µi0 are unknown, so these must be estimated. Therefore, we set
µ̂i0 = ∑n

j=1 xi j/n and define x∗
i j = xi j − µ̂i0, thereby centering each gene around zero.

With the data transformed in this manner, it follows that µ∗
i0 = 0, µ∗

i1 = µi1−µi0 and µ∗
i2 = µi2−µi0,

with estimates µ̂∗
i1 = µ̂i1 − µ̂i0 and µ̂∗

i2 = µ̂i2 − µ̂i0. The variances σ 2
i do not change, so these can be

estimated as before by taking the sample variances under the assumptions of the null and alternative
hypotheses to get σ̂ 2

i0 and σ̂ 2
iA, respectively.

4.5 Estimated ODP thresholding function

The ODP for identifying differentially expressed genes between two groups can then be estimated by
forming the following statistic for each gene i = 1, 2, . . . , m:

ŜODP(xi ) =
∑m

g=1 φ(x∗
i1; µ̂∗

g1, σ̂
2
gA)φ(x∗

i2; µ̂∗
g2, σ̂

2
gA)∑m

g=1 ŵiφ(x∗
i ; 0, σ̂ 2

g0)
.
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Note that the centered data for gene i , x∗
i is evaluated at the estimated likelihood functions for all genes.

Therefore, if gene g has a similar signal to gene i , then its likelihood under the alternative will contribute
substantially to the estimated ODP statistic of gene i . Also, the variance of a gene is taken into account
in its contribution to the statistic, where the smaller the variance, the more its likelihood is allowed to
contribute to gene i’s statistic. The formula of the statistic also makes it clear why it is useful to use the
gene-centered data x∗

i . Strength is borrowed across genes that have a similar structure in the signal, even
if they have different baseline levels of expression (which is not of interest for detecting differential gene
expression).

This method is easily extended to a general K -sample analysis, where K different biological groups
are compared for differential expression. For example, in a three-sample analysis the goal is to identify
genes whose mean expression is different in at least one of the three groups. The estimated ODP statistic
for a K -sample significance test of differential expression is a simple extension of the above two-sample
statistic:

ŜODP(xi ) =
∑m

g=1 φ(x∗
i1; µ̂∗

g1, σ̂
2
gA) · · · φ(x∗

i K ; µ̂∗
gK , σ̂ 2

gA)∑m
g=1 ŵiφ(x∗

i ; 0, σ̂ 2
g0)

. (4.1)

Analogous to the two-sample method, each gene is mean centered around zero to obtain the transformed
data x∗

i . In the one-sample case, the data do not have to be mean centered because there is no nuisance
location parameter present.

4.6 Existing methods

Most of the existing methods for identifying differentially expressed genes implicitly make the normal
distribution assumption that we have made. The statistic for gene i is then formed by ĝi (xi )/ f̂i (xi ). When
the estimated parameters defining f̂i and ĝi are the maximum likelihood estimates, then ĝi (xi )/ f̂i (xi ) is
equivalent to employing the usual t-statistic (Lehmann, 1986). When the maximum likelihood estimates
are shrunken toward a common value (across genes), then the so-called significance analysis of microar-
rays (SAM) statistic and other similar versions emerge (Tusher and others, 2001; Cui and others, 2005;
Efron and others, 2001). Therefore, these more intricate statistics use information across genes only in that
different estimates are employed in ĝi (xi )/ f̂i (xi ). Not surprisingly, these modified statistics sometimes
perform worse than the traditional t-statistic and F-statistic (Section 5).

4.7 Overall algorithm for identifying differentially expressed genes

The following is a description of the estimated ODP for identifying differentially expressed genes. The
basic approach is to form estimated versions of the ODP statistics and then assess significance using
the q-value (Storey, 2002; Storey and Tibshirani, 2003). Full details of this algorithm, including exact
formulas can be found in the supplementary material available at Biostatistics online. Note that one can
also determine a useful significance threshold through estimates of the EFP and ETP, which we also
outline in the supplementary material available at Biostatistics online.

Proposed algorithm for identifying differentially expressed genes

1. Using the formula given above in (4.1), evaluate the estimated ODP statistic for each gene.
2. For B iterations, simulate data from the null distribution for each gene by the bootstrap and recom-

pute each statistic to get a set of null statistics. (Note: The bootstrap sampling is carried out so that
for each iteration, the same resampled arrays are applied to all genes. This keeps the dependence
structure of the genes intact.)
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3. Using these observed and null statistics, estimate the q-value for each gene as previously described
(Storey, 2002; Storey and Tibshirani, 2003).

The algorithm generates an estimated q-value for each gene and a ranking of the genes from most
significant to least significant. The q-value is like the well-known p-value, but it is designed for the
FDR; the q-value of a gene gives the FDR that is incurred when calling that gene and all others with
larger statistics significant (Storey, 2003; Storey and Tibshirani, 2003). One may call genes significant for
differential expression by forming a q-value cutoff at an appropriate level (say, 1%, 5%, or 10%), or one
may simply report the q-value for every gene and let each individual researcher choose a level of desirable
significance. We now apply this method to a well-known breast cancer study, and we compare the ODP
approach to several highly used existing approaches.

5. RESULTS

5.1 Analysis of breast cancer tumor tissue

We assessed the performance of the ODP on a well-known study comparing the expression of breast
cancer tumor tissues among individuals who are BRCA1-mutation-positive, BRCA2-mutation-positive,
and “Sporadic” (Hedenfalk and others, 2001). The expression measurements used in the study consist
of 3226 genes on 22 arrays; seven arrays were obtained from the BRCA1 group, eight from the BRCA2
group, and six from the Sporadic group. One sample was not clearly classifiable, so we eliminated it
from the analysis here. Also, as previously described Storey and Tibshirani (2003), several genes have
aberrantly large expression values within a single group, so we eliminated those genes from the analysis.
Genes were filtered that had any absolute expression measurement greater than 20, which is well beyond
several times the interquartile range from the median. These steps left measurements on 3169 genes from
21 arrays. The raw data were obtained from http://research.nhgri.nih.gov/microarray/NEJM Supplement/
and all data were analyzed on the log2 scale. We applied our proposed procedure to identify differentially
expressed genes between the BRCA1 and BRCA2 groups, and also between all three groups.

We compared our approach to five leading techniques, including (1) the highly used SAM software
based on Tusher and others (2001) and Storey (2002), (2) the traditional t-tests and F-tests as previ-
ously suggested for microarray analysis (Kerr and others, 2000; Dudoit and others, 2002), (3) a recently
proposed variation on these that uses “shrunken” versions of the statistics (Cui and others, 2005), (4) a
nonparametric Bayesian method whose estimated posterior probabilities are also sometimes interpreted
as estimated Bayesian local FDR estimates (Efron and others, 2001), and (5) a model-based empirical
Bayes method giving posterior probabilities of differential expression (Lonnstedt and Speed, 2002).

The methods were compared to determine how accurately and efficiently each one extracts the relevant
biological signal. Each method produces some sort of statistic for each gene, as well as a rule for thresh-
olding these statistics. We used this ranking information to estimate q-values for each gene according to
previously described methodology (Storey, 2002; Storey and Tibshirani, 2003). In order to estimate the
q-values, simulated null statistics were calculated for each method. This was accomplished by simulating
the same null data in order to calculate null statistics for each method.

It should be noted that several model-based Bayesian methods exist (e.g. Newton and others 2001,
2004; Townsend & Hartl 2002) for identifying differentially expressed genes. In particular, Newton and
others (2004) offers a semiparametric empirical Bayes approach that provides an estimate of a Bayesian
version of the FDR. The method is not included in our comparison because of its different approach to
quantifying the FDR. We have only compared methods that have been proposed in or are easily amenable
to the framework of calculating significance based on a resampling-based frequentist FDR.

Newton and others (2004) and three of the methods we include in our comparison (Tusher and others,
2001; Efron and others, 2001; Lonnstedt and Speed, 2002) are able to capture asymmetry in differential

http://research.nhgri.nih.gov/microarray/NEJM_Supplement/
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expression signal for when comparing two groups. Tusher and others (2001) and Efron and others (2001)
do not do so for three or more groups, so they are essentially equivalent to a standard F-test for three or
more groups or time course studies. As we have described, the ODP captures any structure in the signal;
this could be asymmetry in differential expression for two or more groups, variance structure, or structured
temporal trajectories in a time course study.

5.2 Numerical results on the breast cancer data

The methods were compared by considering the number of genes called significant across a range of FDR
cutoffs, which gives an estimate of the relative ETP levels at each given FDR (supplementary material
available at Biostatistics online). For the methods employed here, this is equivalent to comparing the
ETP for each fixed EFP level or p-value cutoff on a slightly different scale. Intuitively, the number of
genes called significant quantifies the relative amount of biological information obtained at a given noise
level. Figure 2 plots the number of genes called significant among the different methods across a range of
estimated q-value cutoffs.

In testing for differential expression between the BRCA1 and BRCA2 groups, the ODP approach
shows notable improvements in performance over existing methods. For example, at an FDR level of
3%, our proposed approach finds 117 significant genes, whereas existing methods only find 41–68 sig-
nificant genes. The estimated ODP method therefore offers increases from 72% to 185% in the number
of genes called significant. The median increase in the number of genes called significant at q-value cut-
offs less than or equal to 10% ranges from 43% to 87% across all methods. In testing for three-sample
differential expression among the BRCA1, BRCA2, and Sporadic groups, the ODP approach offers even

Fig. 2. A comparison of the ODP approach to five leading methods for identifying differentially expressed genes
(described in the text). The number of genes found to be significant by each method over a range of estimated q-
value cutoffs is shown. The methods involved in the comparison are the proposed ODP, SAM, the traditional t-test/
F-test, a shrunken t-test/F-test, a nonparametric empirical Bayes “local FDR” method, and a model-based empirical
Bayes method. A color version of the figure is given in the supplementary material available at Biostatistics online,
Figure 9. (a) Results for identifying differential expression between the BRCA1 and BRCA2 groups in the Hedenfalk
and others data. (b) Results for identifying differential expression between the BRCA1, BRCA2, and Sporadic groups
in the Hedenfalk and others data. The model-based empirical Bayes method has not been detailed for a three-sample
analysis, so it is omitted in this panel.
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greater improvements. For example, it provides increases from 123% to 217% in the number of genes
called significant at an FDR of 3%. Table 1 shows a number of additional comparisons.

An important point is that it is not surprising that the relative performance of the ODP approach is
even better in the three-sample case. The existing methods no longer take into account any asymmetry in
the differential expression signal across genes, as they are mostly exactly equivalent to or variations on
F-statistics. Whereas in the two-sample setting there are two possible directions for differential expres-
sion, there are now six directions in the three-sample setting. The ODP takes advantage of any systematic
asymmetry of differential expression in both the two-sample and three-sample settings, whereas it is not
possible to do so using any version of an F-statistic. If one were to apply the ODP approach to time course
analyses (Storey and others, 2005b), then the gains may be even more substantial because in that setting
the asymmetry is even harder to quantify using traditional statistics.

5.3 Biological significance

In order to determine whether the ODP leads to additional biological information, we considered our
findings relative to those of the five existing methods in the context of identifying genes differentially
expressed between the BRCA1 and BRCA2 groups. It is well known that breast tumors associated with
BRCA1 mutations and BRCA2 mutations differ greatly from each other in their histological appearance
(Lakhani and others, 1998). For example, whereas tumors with BRCA1 mutations exhibit a higher mi-
totic index and more lymphocytic infiltration, tumors with BRCA2 mutations are heterogeneous, are of
a median or high grade, and show a reduced tubule formation (Lakhani and others, 1998). Concordant
with these morphological differences, the gene expression profiles of these two types of tumors have also
shown to be distinctive (Hedenfalk and others, 2001).

At a q-value cutoff of 5%, we found 232 genes to be differentially expressed. Many of the genes
that we identified agree with the morphological changes mentioned above. Thirty-six of these genes are
known to have functions associated with the cell cycle, including many important molecules such as
PCNA, cyclin D1 (CCND1), cyclin-dependent kinase inhibitor 2C (CDKN2C), CDC20 cell division cycle
20 (CDC20), CDC28 protein kinase regulatory subunit 2 (CKS2), cell division cycle 25B (CDC25B), and
CHK1 checkpoint (CHEK1). The majority of these cell-cycle genes are upregulated in BRCA1-positive
tumors, except for cyclin D1, whose overexpression in BRCA2-associated tumors has been shown to be
a useful marker for BRCA2-related breast cancer (Hedenfalk and others, 2001). Closely related to cell
cycle and cell proliferation functions, many genes overexpressed in the BRCA1 group are found to be
associated with apoptosis and genome stability: P53BP2, MSH2, PDCD5, Myc oncogene, and others.
Many of these genes have been described in an earlier analysis of this study (Hedenfalk and others,
2001).

At a q-value cutoff of 5%, the five existing methods found between 115 and 153 genes to be sig-
nificant. Almost every gene identified by these other methods is among the 232 genes found by our
ODP method. However, we find many more genes with the same error rate. Many important genes
would have been missed had we not use the proposed method. Example genes include cell division cy-
cle 25B (CDC25B), connective tissue growth factor (CTGF), growth factor receptor-bound protein 2,
CCAAT/enhancer-binding protein beta (CEBPB), among others. In general, the gene ranking of the pro-
posed ODP approach appears to be notably different than that of the other methods. Figure 6 of the
supplementary material available at Biostatistics online shows the ranking of the top 200 genes from the
proposed ODP approach versus each gene’s ranking from the other five methods. In the two-sample com-
parison, genes ranked in the top 100 by the ODP approach were ranked nearly as low as 600 by other
methods. In the three-sample comparison, genes ranked in the top 200 by the ODP approach were ranked
lower than 400 by other methods.
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5.4 Simulation results

Similar comparisons were made on simulated data, where one knows with certainty which genes are
differentially expressed. Across a range of scenarios, our proposed method continued to perform favorably
over the existing methods. It is certainly possible to find some simulation scenario where the “estimated”
ODP is outperformed, but this should be distinguished from the fact that it is impossible to outperform the
true ODP regardless of which STP one employs. Under certain simulation scenarios, the true ODP can be

Fig. 3. A comparison of the ODP approach to five leading methods for identifying differentially expressed genes
(described in the text and Figure 2) based on simulated data. The number of genes found to be significant by each
method over a range of estimated q-value cutoffs is shown for a single, representative data set from each scenario. The
proposed ODP approach is in black and the other methods are in gray. In general, the data sets increase in complexity
from panels (a) to (d). (a) In this scenario, two groups are compared, there is perfectly symmetric differential expres-
sion, and the variances are simulated from a unimodal, well-behaved distribution. (b) Two groups are compared, there
is moderate asymmetry in the differential expression, and the variances are simulated from a bimodal distribution. (c)
Three groups are compared, there is slight asymmetry in differential expression, and the variances are simulated from
a unimodal, well-behaved distribution. (d) Three groups are compared, there is moderate asymmetry in differential
expression, and the variances are simulated from a bimodal distribution.
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reduced to a simple rule. As an extreme example, if data are simulated so that every gene has the same
variance, and the signal is symmetric about zero (i.e. if one gene is positively differentially expressed,
then there exists another gene with negative differential expression of the same magnitude), then it can be
shown that the true ODP reduces to ranking genes by the absolute values of the fold change.

This fact is important to keep in mind when using simulations to evaluate the various procedures. Most
of the existing procedures make specific assumptions when deriving their statistics; if these assumptions
are enforced in the simulations, then clearly that particular method will be among the top. One advantage
of our proposed method is that it does make fairly general assumptions. Because of this, it performed well
under a range of scenarios.

We show results from four different scenarios in Figures 3 and 4 in order to give a flavor of the
relative performance of the various methods. Both figures are based on the same four simulation sce-
narios. In moving from scenario (a) to (d), increasingly complicated structure is included in the data.

Fig. 4. A comparison of the ODP approach to five leading methods for identifying differentially expressed genes
(described in the text and Figure 2) based on simulated data. The ETP genes is shown for each true FDR level. As
opposed to Figure 3, we have averaged over 100 data sets here and taken into account knowledge of which genes are
true and false discoveries in order to make these exact calculations. Panels (a), (b), (c), and (d) are analogous to those
in Figure 3.
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Scenario (a) is based on data with no high-dimensional structure; the true ODP is more or less equivalent
to ranking genes based on absolute fold change. In this scenario, two groups are compared, there is per-
fectly symmetric differential expression and the variances are simulated from a unimodal, well-behaved
distribution.

Scenario (b) has some asymmetry in the differential expression, but the signals and the variances are
simulated from distributions similar to those motivating the methods in Lonnstedt and Speed (2002) and
Cui and others (2005). Two groups are compared, there is moderate asymmetry in the differential expres-
sion, and the variances are simulated from a bimodal distribution. In scenario (c), three groups are com-
pared, there is slight asymmetry in differential expression, and the variances are simulated
from a unimodal, well-behaved distribution. Similarly, scenario (d) also compares three groups, but there
is more asymmetry in differential expression, and the variances are simulated from a bimodal distri-
bution.

All data sets were generated using the R statistical software package; the code used to generate the data
can be found in the supplementary material available at Biostatistics online. In each scenario, we simulated
data from 3000 genes on eight samples from each biological group, where one third of the genes are
differentially expressed. These commonalities were enforced and the signal to noise structure was made
similar in order to more clearly demonstrate the operating characteristics of our proposed approach and
the relative behavior to existing methods. The fact that one third of the genes are differentially expressed
does not have a large impact on the relative performance of the various methods. We merely chose this
number to closely match the overall signal in the Hedenfalk and others (2001) data and to provide enough
signal to make the comparisons clearer.

Figure 3 is based on a single set of data from each scenario, where the number of significant genes
is plotted against cutoff applied to the estimated q-values. The purpose of this figure is to show that the
relative behavior of the various methods shown in Figure 2 on the Hedenfalk and others (2001) data can
be recapitulated with simulated data. Figure 4 shows results averaged over 100 data sets each, where we
have plotted true FDR versus true ETP for each method. This figure compares the relative performance of
each method based on knowledge of the true status of each gene, as opposed to the empirical comparisons
of Figures 2 and 3.

There are a number of reasons for the less dramatic improvements one sees in Figure 4 relative to
Figure 3, including the fact that the y-axis is on a different scale. A major reason is that Figure 4 does not
include the fact that in practice the q-values must be estimated for each method. The conservativeness of
these estimates is greatly affected by the estimate of the proportion of true nulls (Storey, 2002; Storey and
others, 2004), which depends on how well the method ranks the least differentially expressed genes. Our
proposed approach tends to rank the genes better at both ends, showing the most dramatic improvements
when one takes into account both the ranking of the most significant genes and the q-value estimation,
which are both necessary in practice.

Finally, we verified that each method does in fact control the FDR. Figure 7 of the supplementary
material available at Biostatistics online shows the estimated q-values based on Storey and Tibshirani
(2003) compared to the true FDR across a relevant range of values. It can be seen that all methods we
have considered here, including our proposed method, conservatively estimate the FDR at all estimated
q-value cutoffs.

6. DISCUSSION

We have presented a new approach for the significance analysis of thousands of features in a high-
dimensional biological study. The approach is based on estimating the optimal procedure for applying
a significance threshold to these features, called the ODP. We developed a detailed method that can be
used to identify differentially expressed genes in microarray experiments. This method showed substantial
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improvements over five of the leading approaches that are currently available. This method is available in
the open-source, point-and-click EDGE software package (Leek and others, 2006).

Although the basic theoretical ODP result is straightforward to state (Storey, 2005), applying it in
practice requires some care. Specifically, one must make sure to avoid overfitting or letting nuisance pa-
rameters have a strong effect on the results. We have proposed some simple guidelines here to accomplish
this, although each specific application will need to be considered carefully. We used normal probability
density functions in our microarray method, mainly because the data are continuous and can be shown
to be approximately normal. If one were to analyze some sort of count data, such as that obtained when
analyzing genome sequences, then an appropriate distribution such as the Poisson or Binomial can be
used instead. Some early investigations indicate that the ODP approach may also offer substantial im-
provements for tests involving count data. Note that the actual significance can be calculated nonparamet-
rically, so one does not necessarily have to use the correct parametric distribution in order to obtain a good
procedure.

An important point is that characterizing the true ODP in a particular application can be a powerful
tool for developing an estimated ODP. For example, if every gene’s expression has the same variance,
and the differential expression signal across genes is perfectly symmetric about zero, then under the
normal distribution assumption it can be shown that the true ODP is equivalent to ranking the genes based
on the absolute difference in gene expression (i.e. the simple log-scale fold-change criterion). Clearly,
this exact situation would never occur in practice, but it stresses the fact that the approach proposed
here defines a concrete goal for large-scale significance testing: to estimate the true ODP as well as
possible.

In motivating the ODP approach, we described two major steps involved in large-scale significance
testing: ranking the features and assigning a significance level to each one. However, for a number of
genomics applications, another step may involve deciding exactly what a feature is. For example, in
genome-wide tests of association or in protein mass spectrometry analysis, a feature may be a window of
adjacent observations, or features may even overlap. These are questions that are also likely to play a major
role in developing methods that take full advantage of the high-dimensional nature of the data. We do not
claim that the exact method developed for microarrays will serve as an off-the-shelf procedure to apply
to any large-scale significance testing problem. However, we do project that the basic ODP framework
and some of the tactics that we employed can serve as a useful example for how one approaches these
high-dimensional significance analyses.

ACKNOWLEDGMENTS

Conflict of Interest: None declared.

REFERENCES

BENJAMINI, Y. AND HOCHBERG, Y. (1995). Controlling the false discovery rate: a practical and powerful approach
to multiple testing. Journal of the Royal Statistical Society, Series B 85, 289–300.

CUI, X. AND CHURCHILL, G. A. (2003). Statistical tests for differential expression in cDNA microarray experi-
ments. Genome Biology 4, 210.

CUI, X., HWANG, J. T., QIU, J., BLADES, N. J. AND CHURCHILL, G. A. (2005). Improved statistical tests for
differential gene expression by shrinking variance components estimates. Biostatistics 6, 59–75.

DUDOIT, S., YANG, Y., CALLOW, M. AND SPEED, T. (2002). Statistical methods for identifying differentially
expressed genes in replicated cDNA microarray experiments. Statistica Sinica 12, 111–39.

EFRON, B., TIBSHIRANI, R., STOREY, J. D. AND TUSHER, V. (2001). Empirical Bayes analysis of a microarray
experiment. Journal of the American Statistical Association 96, 1151–60.



ODP for large-scale significance testing 431

HEDENFALK, I., DUGGAN, D., CHEN, Y. D., RADMACHER, M., BITTNER, M., SIMON, R., MELTZER, P.,
GUSTERSON, B., ESTELLER, M., KALLIONIEMI, O. P. AND OTHERS (2001). Gene-expression profiles in hered-
itary breast cancer. New England Journal of Medicine 344, 539–48.

KERR, M. K., MARTIN, M. AND CHURCHILL, G. A. (2000). Analysis of variance for gene expression microarray
data. Journal of Computational Biology 7, 819–37.

LAKHANI, S., JACQUEMIER, J., SLOANE, J., GUSTERSON, B., ANDERSON, T., VAN DE VIJVER, M., FARID, L.,
VENTER, D., ANTONIOU, A., STORFER-ISSER, A. AND OTHERS (1998). Multifactorial analysis of differences
between sporadic breast cancers and cancers involving brca1 and brca2 mutations. Journal of the National Cancer
Institute 90, 1138–45.

LEEK, J. T., MONSEN, E. C., DABNEY, A. R. AND STOREY, J. D. (2006). EDGE: Extraction and analysis of
differential gene expression. Bioinformatics 22, 507–8.

LEHMANN, E. L. (1986). Testing Statistical Hypotheses, 2nd edition. Menlo Park, CA: Springer.

LONNSTEDT, I. AND SPEED, T. (2002). Replicated microarray data. Statistica Sinica 12, 31–46.

NEWTON, M., KENDZIORSKI, C., RICHMOND, C., BLATTER, F. AND TSUI, K. (2001). On differential variability
of expression ratios: improving statistical inference about gene expression changes from microarray data. Journal
of Computational Biology 8, 37–52.

NEWTON, M. A., NOUEIRY, A., SARKAR, D. AND AHLQUIST, P. (2004). Detecting differential gene expression
with a semiparametric hierarchical mixture method. Biostatistics 5, 155–76.

ROCKE, D. M. AND DURBIN, B. (2003). Approximate variance-stabilizing transformations for gene-expression
microarray data. Bioinformatics 19, 966–72.

SEBASTIANI, P., GUSSONI, E., KOHANE, I. S. AND RAMONI, M. F. (2003). Statistical challenges in functional
genomics. Statistical Science 18, 33–70.

SORIC, B. (1989). Statistical discoveries and effect-size estimation, Journal of the American Statistical Association
84, 608–10.

STOREY, J. D. (2002). A direct approach to false discovery rates. Journal of the Royal Statistical Society, Series B
64, 479–98.

STOREY, J. D. (2003). The positive false discovery rate: a Bayesian interpretation and the q-value. Annals of Statistics
31, 2013–35.

STOREY, J. D. (2005). The optimal discovery procedure: a new approach to simultaneous significance testing.
UW Biostatistics Working Paper Series, Working Paper 259. http://www.bepress.com/uwbiostat/paper259/.

STOREY, J. D., DAI, J. Y. AND LEEK, J. T. (2005a). The optimal discovery procedure for large-scale significance
testing, with applications to comparative microarray experiments. UW Biostatistics Working Paper Series, Working
Paper 260. http://www.bepress.com/uwbiostat/paper260/.

STOREY, J. D., TAYLOR, J. E. AND SIEGMUND, D. (2004). Strong control, conservative point estimation, and
simultaneous conservative consistency of false discovery rates: a unified approach. Journal of the Royal Statistical
Society, Series B 66, 187–205.

STOREY, J. D. AND TIBSHIRANI, R. (2003). Statistical significance for genome-wide studies. Proceedings of the
National Academy of Sciences 100, 9440–5.

STOREY, J. D., XIAO, W., LEEK, J. T., TOMPKINS, R. G. AND DAVIS, R. W. (2005b). Significance analysis of
time course microarray experiments. Proceedings of the National Academy of Sciences 102, 12837–42.

TOWNSEND, J. P. AND HARTL, D. L. (2002). Bayesian analysis of gene expression levels: statistical quantification
of relative mRNA level across multiple strains or treatments. Genome Biology 3, research0071.1–0071.16.

TUSHER, V., TIBSHIRANI, R. AND CHU, C. (2001). Significance analysis of microarrays applied to transcriptional
responses to ionizing radiation. Proceedings of the National Academy of Sciences 98, 5116–21.

http://www.bepress.com/uwbiostat/paper259/
http://www.bepress.com/uwbiostat/paper260/


432 J. D. STOREY AND OTHERS

WANG, W. Y. S., BARRATT, B. J., CLAYTON, D. G. AND TODD, J. A. (2005). Genome-wide association studies:
theoretical and practical concerns. Nature Reviews Genetics 6, 109–18.

ZHONG, S., STORCH, F., LIPAN, O., KAO, M., WEITZ, C. AND WONG, W. (2004). GoSurfer: a graphical interac-
tive tool for comparative analysis of large gene sets in gene ontology space. Applied Bioinformatics 3, 1–5.

[Received December 20, 2005; first revision April 16, 2006; second revision August 4, 2006;
accepted for publication August 22, 2006 ]


