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7 A Simple Motivating Example

The following toy example provides some intuition into the operating characteristics of the ODP in

the context of high-dimensional biological studies. Suppose that an expression study is performed

on 15 individuals, seven of which come from one group and eight from another, where the goal is

to identify genes that are differentially expressed between these two groups. This design reflects

the breast cancer study we consider below. Figure 5 shows a heat map of simulated expression

data over 1000 genes under this study design, where the genes have been hierarchically clustered

(Eisen et al. 1998). It can be seen that there is substantial structure among the differentially

expressed genes. Most obviously, there is asymmetry in the differential expression: more genes are

over-expressed in Group 2 than in Group 1. However, among the differentially expressed genes

there are three distinct patterns. Some of these patterns make it more straightforward to detect

differential gene expression than others. Moreover, the more genes with a common differential

expression pattern, the more fruitful it is (in terms of the ETP to EFP trade-off) to call these

genes differentially expressed.

The ODP takes this kind of structure into account, and uses it to optimally extract the differen-

tial expression signal from the noise. The distinct patterns of differential expression are denoted in

Figure 5. The genes present in each cluster will have similar likelihood functions. Moreover, some

types of likelihood functions will be more distinct from the null likelihoods than others. The ODP

considers the data for each gene and evaluates it at the true likelihoods, forming a ratio of the sum

of the data evaluated at the true alternative likelihoods to that of the true null likelihoods. The

precision to which the structure can be captured depends on the level of complexity of the model

for the data defining the likelihood functions.

Note that this type of structure will be present in other high-dimensional biological studies.

For example, in population-based genetic tests of association, contiguous SNPs will show similar

genotypic patterns. Therefore, regions showing true associations with a trait of interest will do so

in a similar manner.

8 Detailed algorithm for identifying differentially expressed genes

The following is a detailed description of the full algorithm for identifying differentially expressed

genes that was presented in the main text.

Let xij be the expression observation for gene i in array j, for i = 1, . . . ,m and j = 1, . . . , n.

The data for a single gene is written as xi = (xi1, xi2, . . . , xin). Assume there are K groups tested

for differential expression, and let xik be the subset of data from group k, k = 1, . . . ,K. Finally,

let Gk be the set of arrays corresponding to group k so that xik = (xij)j∈Gk
. Gene i in group k has

2



Figure 5: Simulated expression data showing structure in the biological signal of interest. A heat map of expression

data on 1000 genes among 15 individuals is shown (red = high, blue = low). The first seven individuals come from

Group 1 and the last eight from Group 2. The genes were hierarchically clustered, and it can be seen that four distinct

clusters of genes emerge: (A) No differential expression; (B) Moderate over-expression in Group 2, low variance; (C)

Strong over-expression in Group 2, large variance; (D) Strong over-expression in Group 1, large variance. Further,

there is pervasive asymmetry in differential expression towards Group 2. The proposed ODP approach captures this

structure and uses it to optimally separate signal from noise in identifying differentially expressed genes.
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mean gene expression µik, and variance σ2
i . Without loss of generality, we define the mean when

the null hypothesis of no differential expression is true to be µi0 =
∑K

k=1 nkµik/n, where nk is the

number of arrays in group k.

Step 1: Calculating ODP statistics. Let (µ̂i0, σ̂
2
i0) be estimates under the constraints of the

null hypothesis, and (µ̂i1, . . . , µ̂iK , σ̂2
i1) be unconstrained estimates. These are defined as follows:

µ̂i0 =

n∑

j=1

xij/n; σ̂2
i0 =

n∑

j=1

(xij − µ̂i0)
2

n − 1

µ̂ik =
∑

j∈Gk

xij/nk; σ̂2
iA =

K∑

k=1

∑

j∈Gk

(xij − µ̂ik)
2

n − K

Note that these are the typical estimates for Normally distributed data. The estimated weights ŵi

for inclusion of each null density in the denominator of the statistic are calculated as detailed in

the main text.

When K = 1 and differential expression is defined to be average expression not equal to zero

(which would be the case when examining the log ratios of expression from a direct comparison

using two-channel microarrays), the estimated ODP statistic for gene i (i = 1, . . . ,m) is

ŜODP(xi) =

∑m
g=1 φ(xi; µ̂g1, σ̂

2
gA)

∑m
g=1 ŵiφ(xi; 0, σ̂

2
g0)

.

When K > 1 each gene is centered as a step in approximately achieving “nuisance parameter

invariance” as described in the main text. Define x∗
ij = xij − µ̂i0 and µ̂∗

ik = µ̂ik − µ̂i0. The

estimated ODP statistic for each gene i is then

ŜODP(xi) =

∑m
g=1 φ(x∗

i1; µ̂
∗
g1, σ̂

2
gA) · · · φ(x∗

iK ; µ̂∗
gK , σ̂2

gA)
∑m

g=1 ŵiφ(x∗
i ; 0, σ̂

2
g0)

.

Centering each gene induces a slight dependence among the x∗
ij within a gene, but this can be taken

into account by modifying the definition of the Normal densities φ. However, this turns out to be

algebraically proportional to the original definition, so no modification is actually necessary. Note

that by centering each gene, we lose no information about differential expression.

Step 2: Simulating null statistics. We obtain null statistics by applying the standard boot-

strap procedure for generating the null distribution when testing the location parameter(s) of a

distribution (Efron & Tibshirani 1993). Let εi be the alternative model residuals obtained from

each gene i’s expression data xi by setting εij = xij − µ̂ik(j) where k(j) is the group to which array

j belongs for i = 1, . . . ,m. For each gene i, a bootstrap null set of data for gene i, x0
i , is obtained
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by resampling n observations with replacement from among the εij and adding these back to the

estimated null mean µ̂i0. For B iterations, bootstrap from the null distribution the expression

data and re-compute each statistic to get a set of null statistics ŜODP(x0b
i ) for b = 1, . . . , B and

i = 1, . . . ,m. Each bootstrap sampling is applied to all genes, keeping the dependence structure of

the genes intact.

It should be noted that the standard permutation null scheme (see, for example, that carried

out in Storey & Tibshirani 2003) could be applied here as well. However, the ODP statistic does

not carry the same pivotality properties as, say, a t-statistic. Therefore, the null permuted data

from a gene with a strong differential expression signal can produce null data with a much larger

variance than its true null. If many genes have a strong signal, then the null statistics from these

genes are not representative of the true null distributions. Since the bootstrap null removes the

signal from each gene before resampling, we have found the bootstrap approach to be more reliable

in this setting. It appears more research into this issue is warranted.

Step 3: Estimating q-values. According to the ODP approach, each possible significance cut-off

is formed by calling all genes significant with ŜODP(xi) ≥ c for some cut-point c. The algorithm

for estimating q-values presented in Storey (2002) and Storey & Tibshirani (2003) is written in

terms of p-values. We show here that if p-values are calculated for each gene in a certain fashion,

then one can employ the existing p-value based q-value estimation so that direct thresholding of

the statistics actually takes place. This avoids the need to re-develop q-value estimation and the

theory justifying it, while allowing us to form ODP statistic thresholds (i.e., ŜODP(xi) ≥ c) rather

than p-value based thresholds.

Suppose that the p-value for gene i is calculated by

pi =

∑B
b=1

∑m
j=1 1

(
ŜODP(x0b

j ) ≥ ŜODP(xi)
)

m · B
, (10)

where 1(·) is standard indicator function equal to one when the argument is true and zero other-

wise. When p-values are calculated in this pooled, gene non-specific way, the subsequent q-value

estimation procedure as defined in Storey (2002) is equivalent to estimating q-values by directly

thresholding the statistics. The following estimate of the false discovery rate when calling all p-

values ≤ t significant is implicit in the algorithm for estimating q-values (Storey 2002, Storey &

Tibshirani 2003):

F̂DR(t) =
π̂0m · t∑m

i=1 1 (pi ≤ t)
.

For a fixed significance cut-off c applied to the original statistics, the analogous false discovery
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rate estimate is

F̂DR(c) =
π̂0

∑B
b=1

∑m
i=1 1

(
ŜODP(x0b

i ) ≥ c
)

/B

∑m
i=1 1

(
ŜODP(xi) ≥ c

) , (11)

where π̂0 is derived from a smoother fit to the

π̂0(c
′) =

∑m
i=1 1

(
ŜODP(xi) < c′

)

∑B
b=1

∑m
i=1 1

(
ŜODP(x0b

i ) < c′
)

/B

over some range of c′ exactly as in the algorithm given in Storey & Tibshirani (2003).

As was stated in Storey & Tibshirani (2003), the original FDR estimate of Storey (2002) is

easily shown to be equivalent to the above formula when p-values are calculated as above. The

key observation is that one can equivalently define the Type I error rate of a given cut-off by
∑B

b=1 #{ŜODP(x0b
i ) ≥ c}/(m · B) rather than the p-value threshold t. In fact, if we define

c(t) ≡ min{ŜODP(xi) : pi ≤ t}

then it can be shown that

π̂0
∑B

b=1

∑m
i=1 1

(
ŜODP(x0b

i ) ≥ c(t)
)

/B

∑m
i=1 1

(
ŜODP(xi) ≥ c(t)

) =
π̂0m · t∑m

i=1 1 (pi ≤ t)

making the two false discovery rate estimates equal. Therefore, q-values derived from either method

are equal as long as the p-values are calculated from the gene non-specific empirical distribution of

the simulated null statistics.

Out of these derivations come direct estimates for the EFP and ETP for each ODP threshold.

In particular, for a threshold c define

ÊFP(c) =
π̂0

∑B
b=1

∑m
i=1 1

(
ŜODP(x0b

i ) ≥ c
)

B

ÊTP(c) =

m∑

i=1

1
(
ŜODP(xi) ≥ c

)
− ÊFP(c)

where π̂0 is estimated as above. The FDR estimate from equation (11) can then be written in terms

of these estimates, further showing the direct connection between the EFP, ETP, and FDR:

F̂DR(c) =
ÊFP(c)

ÊFP(c) + ÊTP(c)
. (12)
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We estimate q-values for our ODP approach in a new way. We pool simulated null statistics

across genes as above, but we do not employ the null statistics from every gene. Specifically, we

only use null statistics from genes with ŵi = 1, i.e., those represented in the denominator of the

statistic. We have found this produces more well behaved estimates of the q-values over using null

statistics from every gene. In implementing this approach, the above formulas are simply replaced

with the proper subset of null statistics. For a fixed significance cut-off c applied to the original

statistics, the EFP and ETP estimates are:

ÊFP(c) =
π̂0

∑B
b=1

∑m
i=1 ŵi1

(
ŜODP(x0b

i ) ≥ c
)

B
∑m

i=1 ŵi/m
,

ÊTP(c) =

m∑

i=1

1
(
ŜODP(xi) ≥ c

)
− ÊFP(c).

The estimates π̂0(c
′) are analogously modified to

π̂0(c
′) =

∑m
i=1 1

(
ŜODP(xi) < c′

)

P
B

b=1

P
m

i=1
bwi1( bSODP(x0b

i
)<c′)

B
P

m

i=1
bwi/m

.

The overall estimate π̂0 is formed by smoothing over some range of c′ exactly as in the above

algorithm. We then plug these estimates into equation (12) in order to estimate FDR for a given

threshold c. Finally, the q-value estimate for each gene i is:

q̂i = min
c≤ bSODP(xi)

F̂DR(c),

i.e., the minimum estimated FDR among all thresholds where gene i is called significant.

9 Comparing procedures based on the number of genes called

significant

The ODP approach was compared to five leading procedure for identifying differentially expressed

genes by comparing the number of genes called significant at each FDR level. It is straightforward

to show that this is an empirical version of the comparison based on the ETP for each fixed FDR.

This follows since ÊTP = (# significant genes)(1− F̂DR), as just shown above. Since each method

is compared at the same value of F̂DR, it follows that comparing the number of significant genes

is equivalent to comparing the methods based on ÊTP, which we showed above provides a valid

estimate of the true ETP. Note that it can also be shown based on these arguments that this
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comparison gives equivalent information about relative performance based on comparing ÊTP for

each fixed ÊFP level.

10 Nuisance parameter invariance

The ODP is most simply defined in terms of the following rule (Storey 2005):

gm0+1(x) + gm0+2(x) + · · · + gm(x)

f1(x) + f2(x) + · · · + fm0
(x)

.

If each hypothesis test has identically defined null and alternative hypotheses then differences

between the fi would be due to nuisance parameters. For example, consider the 2-sample microarray

problem where the null hypothesis for each test is that µi1 = µi2 and the alternative is µi1 6= µi2.

Above, we defined µi0 = (n1µi1 + n2µi2)/n, which is the common mean when the null hypothesis

is true. Under the Normal distribution assumption, the ODP rule is based on

∑m
i=m0+1 φ(x;µi1, µi2, σ

2
i )∑m0

i=1 φ(x;µi0, σ2
i )

, (13)

where as before tests 1, 2, . . . ,m0 have true null hypotheses and the remainder have true alternative

hypotheses. Differences between the null densities φ(x;µi0, σ
2
i ) are due to differing µi0 and σ2

i , which

are not used at all in defining the null and alternative hypotheses. The parameters µi0 and σ2
i are

therefore nuisance parameters.

In the Neyman-Pearson setting, nuisance parameters are usually “canceled out” in some fash-

ion, making them irrelevant in the hypothesis tests. In practice, “pivotal statistics” are desirable

because their null distributions do not depend on any unknown nuisance parameters. In the sin-

gle significance test setting, nuisance parameters are most troublesome in that they make it more

difficult to calculate a null distribution. In the ODP setting, the presence of nuisance parameters

is troublesome for another reason: since the ODP is defined in terms of the true likelihood of each

test, one can manipulate the ODP quite substantially by varying the degree by which the nuisance

parameters values differ between the true null and true alternative tests.

Specifically, consider the above statistic in equation (13) under the scenario where µ10 = · · · =

µm0,0 = −1000 and µm0+1,0 = · · · = µm0 = 1000, as opposed to the scenario where µ10 = · · · =

µm0 = 0. Clearly these two scenarios would yield very different results. In the former case, it

would be much easier to distinguish the true null hypotheses from the true alternative hypotheses.

However, in practice it is not clear how much this matters since in the former case, one would not

be able to estimate the ODP nearly as well. Similar examples can be constructed in terms of the
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nuisance parameters σ2
i . We have also found that certain types of nuisance parameter effects can

lead to over-fitting of the data in the significance testing (see below). Therefore, it is desirable from

a variety of perspectives to eliminate these effects as much as possible.

In the context of this Normal distribution example, one way to avoid effects from nuisance

parameters is to transform the data so that the null distributions are all equal to the N(0, 1)

distribution. This can be done by replacing xij with (xij − µi0)/σi. In practice, this could be

accomplished instead with estimated values, (xij − µ̂i0)/σ̂i. The null distribution of every gene

would then approximately be N(0, 1). This is obviously an extreme form of what we call “nuisance

parameter invariance” because all nuisance parameters have been removed from the data. In our

experience, this particular choice does not work well because there is relevant information in the

σ2
i , and dividing the data by σ̂i induces a lot of extra noise into the expression measurements.

A weaker criterion for nuisance parameter invariance involves a type of subset exchangeability

across null distributions. In particular, we require that the average null likelihood among all tests is

equal to that from the true null tests:
∑m

i=1 fi/m =
∑m0

i=1 fi/m0. This implies that the likelihoods

of the true nulls cannot be pathologically different from the true alternatives simply because of

nuisance parameter values. In the Normal example, one may approximately achieve this property

by forcing all µi0 = 0 (leading to no loss of information or addition of noise) and removing any

relationship between the signal µi1 − µi2 and the variances σ2
i .

Let x∗ be the mean centered data for a single gene (thereby removing the effect of µi0), and let

µ∗
i1 = µi1 −µi0, µ∗

i2 = µi2 −µi0, µ∗
i0 = 0. In the case that

∑m
i=1 φ(·; 0, σ2

i )/m =
∑m0

i=1 φ(·; 0, σ2
i )/m0,

the following statistics are all equivalent:

∑m
i=m0+1 φ(x∗;µ∗

i1, µ
∗
i2, σ

2
i )∑m0

i=1 φ(x∗; 0, σ2
i )

∑m
i=m0+1 φ(x∗;µ∗

i1, µ
∗
i2, σ

2
i )∑m

i=m0+1 φ(x∗; 0, σ2
i )

∑m
i=m0+1 φ(x∗;µ∗

i1, µ
∗
i2, σ

2
i )∑m

i=1 φ(x∗; 0, σ2
i )

∑m0

i=1 φ(x∗; 0, σ2
i ) +

∑m
i=m0+1 φ(x∗;µ∗

i1, µ
∗
i2, σ

2
i )∑m

i=1 φ(x∗; 0, σ2
i )

The fact that the two on the top row are equivalent is reassuring in that the true null and true

alternative hypotheses do not differ in their average likelihoods due to nuisance parameters. The

bottom two statistics show the transition from the original ODP (top left) to the straightforwardly

estimated ODP (bottom right), which was used to motivate our proposed microarray method.

In order to approximately obtain the condition
∑m

i=1 φ(·; 0, σ2
i )/m =

∑m0

i=1 φ(·; 0, σ2
i )/m0, first

mean center the data for each test. Then perform a proper transformation so that there is no

apparent relationship between the difference in average expression between the two groups and the

sample variances. This latter step has been well-studied in general and in the context of microarrays

(Rocke & Durbin 2003).
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11 Over-fitting

In a single test procedure, the null statistic is calculated under the assumption that the data come

from the null distribution. When the statistic involves estimation of parameters, the estimation is

carried out with null data when calculating null statistics. For example, suppose that a generalized

likelihood ratio statistic, ĝ(x)/f̂ (x), is formed, and a resampling based p-value is to be calculated.

This involves randomly resampling the data under the null distribution to obtain null data x0b for

b = 1, . . . , B iterations. The null statistics are calculated by ĝ0b(x0b)/f̂0b(x0b) where ĝ0b and f̂0b

are the new estimates based on x0b.

In our proposed procedure the null statistics are calculated by ŜODP(x0b
i ), where ŜODP is the es-

timated thresholding function based on the original data. In other words, we do not re-estimate the

densites using the null data. When calculating the null distributions of many tests, the assumption

is that some subset of m0 null hypotheses are true and the remaining m−m0 are false. Therefore,

the correct null distribution would be calculated by (i) resampling the m0 true nulls from their

null distributions, (ii) resampling the remaining m − m0 from their alternative distributions, (iii)

re-estimating ŜODP, and (iv) calculating the EFP based on the null statistics calculated among the

m0 true nulls.

Since we cannot identify the m0 true nulls, we resample all data from their null distributions

and we use the originally estimated thresholding function. We do not re-estimate ŜODP for each set

of resampled data because these data are all null, and we want to be able to control the error rate

under the case where m0 are true nulls and m − m0 are true alternatives. Re-estimating ŜODP for

each set of full null data would result in a gross inflation of significance.

The danger in calculating the null statistics as we have done is that over-fitting could cause

some artificial inflation of significance. If our procedure were carried out for a single test, then this

inflation would be very noticeable. However, we were not able to detect any evidence of over-fitting

for our proposed procedure in a variety of scenarios. For example, we randomly selected 1000 genes

from the Hedenfalk et al. data set and randomly permuted their data (within genes) so that we

could be certain that these 1000 were true nulls. We then performed our procedure, calculating p-

values for every gene exactly as described in our algorithm. The p-values corresponding to the 1000

known null genes were then tested for equality to the Uniform distribution through a Kolmogorov-

Smirnov test. According to the Kolmogorov-Smirnov test carried out over many iterations of this

simulation, the p-values followed the Uniform distribution nearly perfectly1.

There seem to be two reasons why our procedure does not suffer from over-fitting. The first is

1That is, for each iteration of this simulation, a Kolmogorov-Smirnov p-value was calculated, and then these were
again tested against the Uniform distribution, indicating that there was no evidence among the many simulations
that the ODP p-values deviated from a Uniform distribution.
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that the ODP thresholding function is estimated from thousands of genes, so the variance of this

estimate is negligible. In other words, one can randomly select a subset of, say, 1500 genes, estimate

the ODP by these, and apply it to all of the data. The results will be virtually identical to using

the entire data set. This is evidence that as the number of genes grows large, the estimated ODP

eventually settles down to some fixed form. The second reason why we are able to avoid over-fitting

is based on the approximate nuisance parameter invariance that was achieved. Because of this, the

signals of true alternatives were not allowed to affect the overall sum of null densities.

Regardless, an extra precaution one can take is the following. When calculating resampling

based null statistics for gene i, replace ĝi and f̂i with versions estimated from the resampled null data

for gene i. The over-fitting of gene i is most likely to occur in ĝi and f̂i, so these can be re-estimated

while not disturbing the status of the other significance tests. If a gene’s data are very different than

all the other genes, then this adjustment is crucial because the other estimated densities contribute

negligible amounts to its statistic, making this gene’s statistic especially susceptible to over-fitting.

If this extra precaution is taken then we do not foresee over-fitting to be an issue in typical data

sets. One can also always test for over-fitting in the manner that we did with the Hedenfalk et al.

study.

12 Simulation Details

The following displays the R code used to generate each data set from the four simulation scenarios

considered in detail here. In each scenario, we simulated data from 3000 genes on eight samples

from each biological group, where one third of the genes are differentially expressed. These com-

monalities were enforced and the signal to noise structure was made similar in order to more clearly

demonstrate the operating characteristics of our proposed approach and the relative behavior to

existing methods.

Scenario a:

dat <- matrix(rnorm(3000*16), ncol=16)

y <- c(rep(1,8),rep(2,8))

sigma2 <- 0.5 + rgamma(1500, shape=2, rate=4)

sigma2 <- c(sigma2, runif(1500, min=1.7, max=2.2))

sigma2 <- sample(sigma2)

mu <- rep(0,3000)

mu[1:200] <- rnorm(200, mean=1, sd=0.3)

mu[201:333] <- 1.2

mu[334:800] <- rnorm(467, mean=-1.0, sd=0.3)

mu[801:1000] <- -0.9
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mu[1:1000] <- abs(mu[1:1000])*sample(c(rep(1,500),rep(-1,500)))

for(i in 1:3000) {

dat[i,1:8] <- dat[i,1:8]*sqrt(sigma2[i])

dat[i,9:16] <- dat[i,9:16]*sqrt(sigma2[i]) + rep(mu[i],8)

}

Scenario b:

dat <- matrix(rnorm(3000*16), ncol=16)

y <- c(rep(1,8),rep(2,8))

sigma2 <- runif(1000, min=0.5, max=0.75)

sigma2 <- c(sigma2, runif(500, min=1.2, max=1.3))

sigma2 <- c(sigma2, runif(1500, min=1.7, max=2.2))

sigma2 <- sample(sigma2)

mu <- rep(0,3000)

mu[1:200] <- rnorm(200, mean=1, sd=0.3)

mu[201:333] <- -1.2

mu[334:800] <- rnorm(467, mean=-1.0, sd=0.3)

mu[801:1000] <- -0.9

for(i in 1:3000) {

dat[i,1:8] <- dat[i,1:8]*sqrt(sigma2[i])

dat[i,9:16] <- dat[i,9:16]*sqrt(sigma2[i]) + rep(mu[i],8)

}

Scenario c:

dat <- matrix(rnorm(3000*24), ncol=24)

y <- c(rep(1,8),rep(2,8),rep(3,8))

sigma2 <- runif(3000, min=0.5, max=1.25)

sigma2 <- sample(sigma2)

mu <- rep(0,3000)

mu[1:200] <- rnorm(200, mean=1, sd=0.3)

mu[201:333] <- -1.2

mu[334:800] <- rnorm(467, mean=-1.0, sd=0.3)

mu[801:1000] <- -0.9

mu[1:1000] <- abs(sample(mu[1:1000]))

for(i in 1:600) {

dat[i,y==1] <- dat[i,y==1]*sqrt(sigma2[i])

dat[i,y==2] <- dat[i,y==2]*sqrt(sigma2[i]) + rep(mu[i],8)

dat[i,y==3] <- dat[i,y==3]*sqrt(sigma2[i])

}

for(i in 601:1000) {

dat[i,y==1] <- dat[i,y==1]*sqrt(sigma2[i])

dat[i,y==2] <- dat[i,y==2]*sqrt(sigma2[i])

dat[i,y==3] <- dat[i,y==3]*sqrt(sigma2[i]) + rep(mu[i],8)
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}

for(i in 1001:3000) {

dat[i,] <- dat[i,]*sqrt(sigma2[i])

}

Scenario d:

dat <- matrix(rnorm(3000*24), ncol=24)

y <- c(rep(1,8),rep(2,8),rep(3,8))

sigma2 <- runif(1000, min=0.5, max=0.75)

sigma2 <- c(sigma2, runif(500, min=1.2, max=1.3))

sigma2 <- c(sigma2, runif(1500, min=1.7, max=2.2))

sigma2 <- sample(sigma2)

mu <- rep(0,3000)

mu[1:200] <- rnorm(200, mean=1, sd=0.3)

mu[201:333] <- -1.2

mu[334:800] <- rnorm(467, mean=-1.0, sd=0.3)

mu[801:1000] <- -0.9

mu[1:1000] <- abs(sample(mu[1:1000]))

for(i in 1:700) {

dat[i,y==1] <- dat[i,y==1]*sqrt(sigma2[i])

dat[i,y==2] <- dat[i,y==2]*sqrt(sigma2[i]) + rep(mu[i],8)

dat[i,y==3] <- dat[i,y==3]*sqrt(sigma2[i])

}

for(i in 701:1000) {

dat[i,y==1] <- dat[i,y==1]*sqrt(sigma2[i])

dat[i,y==2] <- dat[i,y==2]*sqrt(sigma2[i])

dat[i,y==3] <- dat[i,y==3]*sqrt(sigma2[i]) + rep(mu[i],8)

}

for(i in 1001:3000) {

dat[i,] <- dat[i,]*sqrt(sigma2[i]) }
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Figure 6: The gene ranking of the ODP versus the existing five methods when identifying differentially expressed

genes from the Hedenfalk et al. data. For each of the top 200 ranked genes according to the ODP approach (x-axis),

the ranking given by the other methods is plotted (y-axis). It can be seen that the ODP approach yields a notably

different ranking of the genes. The identity line is shown in red, indicating whether the other methods produce a

ranking higher or lower than the ODP approach. (a) Two-sample analysis identifying differentially expressed genes

between BRCA1 and BRCA2 mutation positive tumors. (b) Three-sample analysis identifying differentially expressed

genes between BRCA1, BRCA2, and Sporadic tumors.
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Figure 7: Plots verifying that each method considered controls the FDR by using the estimated q-value methodology

of Storey (2002) and Storey & Tibshirani (2003). For each of the four simulation scenarios considered (a–d; see main

text and Section 13 above), the estimated q-values versus the true FDR are plotted. The proposed ODP method is

plotted in black, the other methods are plotted in grey, and the dotted line is the identity function. It can be seen

that the estimated q-values conservatively estimate the FDR in all cases.
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Figure 8: Color version of Figure 1 from the main text. Plots comparing the NP testing approach to the ODP

testing approach through a simple example. (a) NP approach. The null (grey) and alternative (black) probability

density functions of a single test. For observed data x and y, the statistics are calculated by taking the ratio of

the alternative to the null densities at each respective point. In this NP approach, the test with data y is more

significant than the test with data x. (b) ODP approach. The common null density (grey) for true null tests and the

alternative densities (black) for several true alternative tests. For observed data x and y, the statistics are calculated

by taking the ratio of the sum of alternative densities to the null density evaluated at each respective point. In this

ODP approach, the test with data x is now more significant than the test with data y, because multiple alternative

densities have similar positive means even though each one is smaller than the single alternative density with negative

mean.
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Figure 9: Color version of Figure 2 from the main text. A comparison of the ODP approach to five leading methods

for identifying differentially expressed genes (described in the text). The number of genes found to be significant

by each method over a range of estimated q-value cut-offs is shown. The methods involved in the comparison are

the proposed ODP (black), SAM (turquoise), the traditional t-test/F-test (red), a shrunken t-test/F-test (green),

a non-parametric empirical Bayes “local FDR” method (a: blue, b: turquoise), and a model-based empirical Bayes

method (fuchsia). (a) Results for identifying differential expression between the BRCA1 and BRCA2 groups in the

Hedenfalk et al. data. (b) Results for identifying differential expression between the BRCA1, BRCA2, and Sporadic

groups in the Hedenfalk et al. data. The model-based empirical Bayes methods have not been detailed for a 3-sample

analysis, so they are omitted in this panel. 17
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