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Abstract: With the increase in genome-wide experiments and the sequencing of mul-

tiple genomes, the analysis of large data sets has become commonplace in biology.

It is often the case that thousands of features in a genome-wide data set are tested

against some null hypothesis, where a number of features are expected to be sig-

nificant. Here we propose an approach to measuring statistical significance in these

genome-wide studies based on the concept of the false discovery rate. This approach

offers a sensible balance between the number of true positives and false positives that

is automatically calibrated and easily interpreted. In doing so, a measure of statistical

significance called the q-value is associated with each tested feature. The q-value is

similar to the well known p-value, except it is a measure of significance in terms of the

false discovery rate rather than the false positive rate. Our approach avoids a flood of

false positive results, while offering a more liberal criterion than what has been used

in genome scans for linkage.
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Introduction

Some of the earliest genome-wide studies involved testing for linkage at loci spanning a large portion

of the genome. Since a separate statistical test is performed at each locus, traditional p-value cut-

offs of 0.01 or 0.05 had to be made stricter to avoid an abundance of false positive results. The

threshold for significance in linkage analysis is usually chosen so that the probability of any single

false positive among all loci tested is less than or equal to 0.05. This strict criterion is used mainly

because one or very few loci are expected to show linkage in any given study [1, 2]. Due to the

recent surge in high-throughput technologies and genome projects, many more types of genome-

wide studies are now underway. The analyses of these data also involve performing statistical tests

on thousands of features in a genome. As opposed to the linkage case, it is expected that many

more than one or two of the tested features are statistically significant. Guarding against any

single false positive occurring is often going to be much too strict and will lead to many missed

findings. The goal is therefore to identify as many significant features in the genome as possible,

while incurring a relatively low proportion of false positives.

We are specifically concerned with situations in which a well-defined statistical hypothesis test

is performed on each of thousands of features represented in a genome. These “features” can be

genes, all nucleotide words of a certain length, SNP markers, etc. Several motivating examples

are given below. For each feature, a null hypothesis is tested against an alternative hypothesis.

In this work, we say that a feature is truly null if the null hypothesis is true, and a feature is

truly alternative if the alternative hypothesis is true. If a feature is called significant, then the null

hypothesis is rejected in favor of the alternative hypothesis. The goal is to propose and estimate

a measure of significance for each feature that meets the practical goals of the genome-wide study,

and that is easily interpreted in terms of the simultaneous testing of thousands of features.

We propose that the recently introduced q-value [3,4] is a well suited measure of significance for

this growing class of genome-wide tests of significance. The q-value is an extension of a quantity

called the “false discovery rate” [5], which has received much recent attention in the statistics

literature [6, 7, 8, 9, 10, 11]. A false discovery rate method has been used in detecting differential

gene expression in DNA microarray experiments [12], which can be shown to be equivalent to [5]

under certain assumptions. Also, ideas similar to false discovery rates have appeared in the genetics

literature [1, 13].

Similarly to the p-value, the q-value gives each feature its own individual measure of significance.

Whereas the p-value is a measure of significance in terms of the false positive rate, the q-value is

a measure in terms of the false discovery rate. The false positive rate and false discovery rate

are often mistakenly equivocated, but their difference is actually very important. Given a rule
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for calling features significant, the false positive rate is the rate that truly null features are called

significant. The false discovery rate is the rate that significant features are truly null. For example,

a false positive rate of 5% means that on average 5% of the truly null features in the study will be

called significant. A false discovery rate of 5% means that among all features called significant, 5%

of these are truly null on average.

The q-value provides a measure of each feature’s significance, automatically taking into account

the fact that thousands are simultaneously being tested. Suppose that features with q-values less

than or equal to 5% are called significant in some genome-wide test of significance. This results in

a false discovery rate of 5% among the significant features. A p-value threshold of 5% yields a false

positive rate of 5% among all null features in the data set. In light of the definition of the false

positive rate, a p-value cut-off says little about the content of the features actually called significant.

The q-values directly provide a meaningful measure among the features called significant. Since

significant features will likely undergo some subsequent biological verification, a q-value threshold

can be phrased in practical terms as the proportion of significant features that turn out to be false

leads.

Here we show that the false discovery rate is a sensible measure of the balance between the

number of true positives and false positives in many genome-wide studies. We motivate our pro-

posed approach in the context of several recent and prominent papers in which awkwardly chosen

p-value cut-offs were used in an attempt to at least qualitatively achieve what the q-value directly

achieves. We also introduce a fully automated method for estimating q-values, with an initial

treatment of dependence issues between the features and guidelines as to when the estimates are

accurate. The proposed methodology is applied to some gene expression data taken from cancer

tumors [14], supporting previously shown results as well as providing some new information.

Motivating Examples

Consider the following four recent articles in which thousands of features from a genome-wide data

set were tested against a null hypothesis. In each case, p-values thresholds were employed to decide

which features to call significant, although the ultimate goal was to identify many truly alternative

features without including too many false positives.

Example 1: Detecting differentially expressed genes. A common goal in DNA microarray ex-

periments is to detect genes that show differential expression across two or more biological condi-

tions [15]. This is an important question to answer since it allows one to discover genes involved

in differentiating complex biological states. In this scenario, the “features” are the genes, and they

are tested against the null hypothesis that there is no differential gene expression. One of the goals
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of Hedenfalk et al. [14] is to find genes that are differentially expressed between BRCA1-mutation-

positive tumors and BRCA2-mutation-positive tumors by obtaining several microarrays from each

cell type. In their analysis they compute a modified F-statistic and use it to assign a p-value to each

gene. A p-value cut-off of 0.001 was selected to find 51 genes out of 3226 that show differential gene

expression. A rough calculation shows that about 3 false positives are expected with this cut-off.

They later use a threshold of 0.0001 and conclude that 9 to 11 genes are differentially expressed.

Example 2: Identifying exonic splicing enhancers. Exonic splice enhancers (ESEs) are short

oligonucleotide sequences that enhance pre-mRNA splicing when present in exons [16]. Fairbrother

et al. [17] analyzed human genomic DNA in order to predict ESEs based on the statistical analysis

of exon-intron and splice site composition. They assessed the statistical significance of all 4096

possible hexamers, the null hypothesis being a mathematical formulation of a hexamer not being

an ESE. A statistic is formed based on the location of the hexamers in 4817 human genes where

the exon-intron structure has been well characterized. The end product is a p-value associated with

each of the 4096 hexamers. A p-value cut-off of 10−4 was used based on the rationale that at most

4096 × 10−4 < 1 false positive is expected under this criterion. This cut-off yields 238 significant

hexamers, a number of which were subsequently biologically verified.

Example 3: Genetic dissection of transcriptional regulation. Global monitoring of gene expres-

sion and large scale genotyping were recently used to study transcriptional regulation in yeast.

Brem et al. [18] crossed two strains of yeast, where many genes appeared to be differentially ex-

pressed between these two strains. For 40 of the resulting haploid progeny, the expression levels of

6215 genes were measured using microarrays. Linkage was tested between 3312 markers spanning

the genome and each of these 6215 “quantitative traits.” A statistically significant linkage between

a gene’s expression level and a marker indicates that a regulator for that gene is located in the re-

gion of the marker. In analyzing these data, one can perform a statistical test for each gene-marker

combination, resulting in millions of p-values, or one can test each gene for showing linkage to at

least one locus, resulting in 6215 p-values. Taking the latter approach and using a p-value cut-off

of 8.5 × 10−3, the authors report that 507 genes show linkage to at least one locus, where 53 are

expected by chance. A cut-off of 1.6× 10−4 yields 205 genes showing linkage to at least one locus,

where 1 is expected by chance. The p-values are calculated according to a permutation scheme

in order to capture the dependence between adjacent markers [19]. The above cut-offs correspond

to respective thresholds of 5 × 10−5 and 2 × 10−6 when testing every gene-marker combination.

Several other p-value cut-offs with similar pieces of information are given throughout the article.

Example 4: Finding binding sites of transcriptional regulators. Transcriptional regulatory pro-

teins bind to specific promoter sequences to participate in the regulation of gene expression. The

availability of complete genome sequences and the development of a method for genome-wide bind-
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ing analysis has allowed the characterization of genomic sites bound by specific transcriptional reg-

ulators. Lee et al. [20] used genome-wide location analysis to investigate how yeast transcriptional

regulators bind to promoter sequences across the genome. Specifically, binding of 106 transcrip-

tional factors was measured across the genome. At each genomic location, a p-value was calculated

under the null hypothesis that no binding occurs, resulting in the consideration of thousands of

p-values. Lee et al. “generally describe results obtained at a p-value threshold of 0.001 because

[their] analysis indicates that this threshold maximizes inclusion of legitimate regulator-DNA in-

teractions and minimizes false positives.” They estimate that among the 3985 interactions found

to be significant at this threshold, about 6% to 10% are false positives.

Reasonable p-value thresholds were sought in each of the four examples. Three of them used

four or more cut-offs in an attempt to circumvent the inherent difficulty in interpreting a p-value

threshold in a genome-wide study. The significance of the results is consequently obfuscated by the

multiple cut-offs that are applied to the p-values. Two pieces of information make such analyses

more straightforward and universally interpretable. The first is an estimate of the overall proportion

of features that are truly alternative, even if these cannot be precisely identified. For example, what

proportion of the 3226 genes in Example 1 are differentially expressed? The second is a measure

of significance that can be associated with each feature so that thresholding these numbers at a

particular value has an easy interpretation. We provide both of these in our proposed approach.

Note that in Example 1, one could just as well work with the modified F-statistic and threshold it

directly. This is equivalent to thresholding the p-values described above. The proposed methodology

described in terms of the original statistics can be intuitively pleasing for certain cases, proving

that p-values are not a necessary intermediate step. However, in other cases, such as Example

2 and Example 3, the test statistics and null distributions are much more complicated, and p-

values provide a convenient numerical measure of the strength of evidence against the null for each

feature. For this reason, we describe our proposal in terms in p-values rather than test statistics. It

is also preferable to present the q-value estimates in terms of p-values to make the method widely

applicable. However, working with the original test statistics and null distributions will lead to the

same q-value estimates [3].

Proposed Method and Results

The dilemma of how to consider, say, m p-values is seen more clearly by considering the various

outcomes that occur when a significance threshold is applied to them. Table 1 lists these outcomes:

specifically, F is the number of false positives, T is the number of true positives, and S is the

total number of features called significant. Also, m0 is the number of truly null features in the
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study, and m1 = m−m0 is the number of truly alternative features. These quantities can be used

to form an overall error measure for any given p-value cut-off. Regardless of whether the p-value

threshold is fixed or data-dependent, the quantities F , T , and S are random variables. Therefore,

it is common statistical practice to write the overall error measure in terms of an expected value,

which we denote by E[·].

*** Table 1 about here. ***

If the false positive rate is the error measure used, then a simple p-value threshold is employed.

A p-value threshold of 0.05, for example, guarantees only that the expected number of false positives

is E[F ] ≤ 0.05 ·m. This number is much too large for all the examples we have considered, and

the false positive rate is too liberal. The error measure that is typically controlled in genome scans

for linkage is the family-wise error rate, which can be written as Pr(F ≥ 1). (Note that we can

guarantee that Pr(F ≥ 1) ≤ α by calling all features significant with p-values less that or equal to

α/m, which is the well known Bonferroni correction.) Controlling Pr(F ≥ 1) is practical when very

few features are expected to be truly alternative (e.g., in the linkage case) since any false positive

can lead to a large waste of time. However, the family-wise error rate is much too conservative

for many of the genome-wide studies currently being performed, including the four examples we

considered where many features are expected to be truly alternative.

It is therefore useful to find an error measure in between these, specifically, one that provides a

sensible balance between the number of false positive features F and the number of true positive

features T . This balance can efficiently be achieved by considering the ratio

#false positive features
#significant features

=
F

F + T
=

F

S
,

which can be stated in words as the proportion of false positive features among all of those called

significant. We are particulary interested in the false discovery rate, which is defined to be the

expected value of this quantity:

FDR = E
[

F

F + T

]
= E

[
F

S

]
.

To be completely rigorous, there is the possibility that S = 0 in which case F/S is undefined, so

some adjustment has to be made to this definition (see Remark A in the Appendix). The FDR can

also be written in terms of the well known specificity, (m0 − F )/m0, and sensitivity, T/m1:

FDR = E
[

m0 · [1− specificity]
m0 · [1− specificity] + m1 · sensitivity

]
.
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It is clear that the false discovery rate is a useful measure of the overall accuracy of a set of

significant features for the examples we described and for many other genome-wide studies. But

one would also like a measure of significance that can be attached to each individual feature. The

q-value is a measure designed to reflect this.

Suppose that we list the features in order of their evidence against the null hypothesis. It is

practical to arrange the features in this way since calling one feature significant means that any

other feature with more evidence against the null should also be called significant. Hence we list

the features from smallest to largest p-value. If a threshold value is chosen, we call all features

significant up through that threshold.

The q-value for a particular feature is the expected proportion of false positives incurred

when calling that feature significant.

Therefore, calculating the q-values for each feature and thresholding them at q-value level α pro-

duces a set of significant features so that a proportion of α are expected to be false positives.

Typically the p-value is described as the probability of a null feature being as or more extreme than

the observed one. “As or more extreme” in the above set-up means that it would appear higher on

the list. The q-value of a particular feature can be described as the expected proportion of false

positives among all features as or more extreme than the observed one. The q-value has a special

probabilistic relationship to the p-value (yielding the origin of its name) that is briefly explained

in Remark A of the Appendix.

As a concrete example, we considered the data from [14] to identify genes that are differentially

expressed between BRCA1-mutation-positive tumors and BRCA2-mutation-positive tumors. Using

a two-sample t-statistic, we calculated a p-value for each of 3170 genes under the null hypothesis of

no differential gene expression. See Remark C in the Appendix for specific details. Figure 1 shows

a density histogram of the 3170 p-values. The dashed line is the density we would expect if all

genes were null (not differentially expressed), so it can be seen that many genes are differentially

expressed.

*** Figure 1 about here. ***

Given the definition of the q-value, it makes sense to begin by estimating the FDR when calling

all features significant whose p-value is less than or equal to some threshold t, where 0 < t ≤ 1.

Denote the m p-values by p1, p2, . . . , pm, and let

F (t) = #{null pi ≤ t; i = 1, . . . ,m} and S(t) = #{pi ≤ t; i = 1, . . . ,m}.
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We then want to estimate

FDR(t) = E
[
F (t)
S(t)

]
.

Since we are considering many features (i.e., m is very large), it can be shown that

FDR(t) = E
[
F (t)
S(t)

]
≈ E[F (t)]

E[S(t)]
. (1)

A simple estimate of E[S(t)] is the observed S(t); that is, the number of observed p-values less than

or equal to t. In estimating E[F (t)], recall that p-values corresponding to truly null hypotheses

should be uniformly distributed∗. Therefore, the probability a null p-value is less than or equal

to t is simply t, and it follows from Table 1 that E[F (t)] = m0 · t. Since the total number of

truly null features m0 is unknown it has to be estimated. Equivalently one can estimate the (more

interpretable) proportion of features that are truly null, which we denote by π0 ≡ m0/m.

It is difficult to estimate π0 without specifying the distribution of the truly alternative p-values.

However, exploiting the fact that null p-values are uniformly distributed, a reasonable estimate

can be formed. From Figure 1 we can see that the histogram density of p-values beyond 0.5 looks

fairly flat, which indicates that there are mostly null p-values in this region. The height of this flat

portion actually gives a conservative estimate of the overall proportion of null p-values. This can

be quantified with

π̂0(λ) =
#{pi > λ; i = 1, . . . ,m}

m(1− λ)
,

which involves the tuning parameter λ. Setting λ = 0.5, we estimate that 67% of the genes in the [14]

data are not differentially expressed. Note that through significance tests, prediction models, and

various other techniques, it has been qualitatively argued that BRCA1-mutation-positive tumors

and BRCA2-mutation-positive tumors can be distinguished by their genetic profiles [14]. Our

estimate of 67% provides a direct measurement of this: we estimate that at least 33% of the

examined genes are differentially expressed between these two tumor types. Using traditional p-

value cut-offs, Hedenfalk et al. were only comfortable with concluding that 9 to 11 genes are

differentially expressed out of over 3000.

The rationale behind the estimate of π0 is that p-values of truly alternative features will tend to

be close to zero, whereas p-values of null features will be uniformly distributed among [0, 1]. “Most”

of the p-values we observe near 1 will be null then. If we were able to count only null p-values,

then #{null pi>λ}
m(1−λ) would be an unbiased estimate of π0. The inclusion of a few alternative p-values

only makes this estimate conservative. If we take λ = 0, then π̂0(λ) = 1, which is usually going
∗If the null p-values are not uniformly distributed, then one wants to err in the direction of overestimating p-

values (i.e, underestimating significance). Correctly calculated p-values is important assumption underlying our

methodology. See also Remark D in the Appendix.
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to be much too conservative in genome-wide data sets, where a sizable proportion of features are

expected to be truly alternative. However, as we set λ closer to 1 the variance of π̂0(λ) increases,

making the estimated q-values more unreliable. By examining the data in Figure 1, a common

sense choice for λ was λ = 0.5. In general, it is useful to automate this choice. We introduce a

novel and fully automated method in Remark B of the Appendix for estimating π0 that borrows

strength across a range of π̂0(λ). This automated method also happens to result in π̂0 = 0.67.

By plugging these quantities into the right hand side of 1, FDR(t) is estimated by

F̂DR(t) =
π̂0m · t
S(t)

=
π̂0m · t

#{pi ≤ t}
.

The more mathematical definition of the q-value is the minimum FDR that can be attained when

calling that feature significant (see Remark A in the Appendix). Thus, the q-value of feature i

is mint≥pi FDR(t), where we have simply considered all thresholds t ≥ pi. We can estimate the

q-value of feature i by simply plugging F̂DR(t) into the above definition:

q̂(pi) = min
t≥pi

F̂DR(t).

Note that this guarantees that the estimated q-values are increasing in the same order as the

p-values. This method is presented in an easily implemented and fully automated algorithm in

Remark B of the Appendix.

We mention two mathematical results concerning the accuracy of the estimated q-values that

hold for large m under what we call “weak dependence” of the p-values (or features). Weak

dependence can loosely be described as any form of dependence whose effect becomes negligible as

the number of features increases to infinity (see Remark D in the Appendix and ref. [10]). The

first result is the following: if we call all features significant with q-values less than or equal to

α, then for large m the false discovery rate will be less than or equal to α. The second result

is that the estimated q-values are simultaneously conservative for the true q-values. This means

that the estimated q-value of each feature is greater than or equal to its true q-value, across all

features at once. Under this result, one can consider each feature’s significance simultaneously

without worrying about inducing bias. In a sense, the second result implies that one can consider

all α cut-offs simultaneously, which is a much stronger generalization of the first result. These

conservative properties are desirable because one does not want to underestimate the true q-values

or the true proportion of false positives. We hypothesize that the most likely form of dependence

between features in a genome-wide data set will meet the weak dependence requirement, although

this has to be considered for each application. Specifically for DNA microarray data, we argue that

since genes behave dependently in small groups (i.e., pathways), with each group essentially being

independent of the others, then the dependence can be modeled in blocks in such a way to satisfy
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the mathematical conditions. More specific details of these mathematical results can be found in

Remark D of the Appendix.

Given this potentially valuable theoretical justification for considering all q-values simultane-

ously, even in the presence of weak dependence, it is possible to use several plots to calibrate the

q-value cut-off one would want to apply in a study. (On the other hand, a single cut-off is not always

necessary; each feature’s estimated q-value could simply be reported.) Figure 2a shows a plot of

the q-values versus their t-statistics from the [14] data. Figure 2b is a plot of the q-values versus

their p-values. One can see the expected proportion of false positives for different p-value cut-offs

from this plot. Figure 2c shows the number of significant genes for each q-value. Notice that for

estimated q-values slightly greater than 0.02, there is a sharp increase in the number of significant

genes over a small increase in q-value. This allows one to easily see that a slightly larger q-value

cut-off results in many more significant genes. Finally, Figure 2d shows the expected number of

false positives as a function of the number of genes called significant. In general, these last three

plots can be used concurrently to give the researcher a comprehensive view of what features to

examine further.

*** Figure 2 about here. ***

In our analysis, thresholding genes with q-values less than 0.05 yields 160 genes significant for

differential expression. This means that about 8 of the 160 genes called significant are expected

to be false positives. It has been previously been noticed that a large block of genes are over-

expressed in BRCA1-mutation-positive tumors, particularly genes involved in DNA repair and

apoptosis [14]. We find that 117 of the 160 called significant at q-value level 0.05 are over-expressed

in BRCA1-mutation-positive tumors, quantitatively supporting their claim. The 0.05 q-value cut-off

is arbitrary, and we do not recommend that this value necessarily be used. Considering particular

genes allows us to examine their individual q-values. For example, the MSH2 gene (clone 32790)

is the eighth most significant gene for differential expression with a q-value of 0.013 and a p-value

of 5.05 × 10−5. This gene is over-expressed in the BRCA1-mutation-positive tumors indicating

increased levels of DNA repair [21].

MSH2’s p-value of 5.05×10−5 says that the probability a null (non-differentially expressed) gene

would be as or more extreme than MSH2 is 5.05×10−5. But MSH2’s statistic could also be unlikely

for a differentially expressed gene. The q-value allows a quantification of this: the estimated q-value

for MSH2 is 0.013, meaning that about 0.013 of the genes as or more extreme than MSH2 are false

positives. The PDCD5 gene (clone 502369) is the 47th most significant gene with a q-value of

0.022 and p-value of 4.79 × 10−4. This gene, associated with inducing apoptosis [22], is also over-
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expressed in BRCA1-mutation-positive tumors. The CTGF gene (clone 38393) is the 159th most

significant gene for differential expression (q-value = 0.049, p-value=0.0036), and is over-expressed

in BRCA2-mutation-positive. Activity of this gene is associated with suppressing apoptosis [23],

further supporting earlier claims [14]. Therefore our results support the previous observation that

many genes are over-expressed in BRCA1-mutation-positive tumors, particularly genes involved

in DNA repair and apoptosis. A full list of genes with their q-values, p-values and fold-change is

available at http://genomine.org/qvalue/results.html.

It is a common mistake to state that the p-value is the probability a feature is a false positive.

We stress that the q-value is also not the probability that the feature is a false positive. In the

above example MSH2 has q-value equal to 0.013 – this does not imply that MSH2 is a false positive

with probability 0.013. Rather, 0.013 is the expected proportion of false positives incurred if we

call MSH2 significant. Since the q-value measure includes genes that are possibly much more

significant than MSH2, the probability that MSH2 is itself a false positive may be substantially

higher. In terms of the false discovery rate approach, this probability can also be thought of as

a “local false discovery rate” [8, 3, 24]. Statistical significance involves making a decision between

null and alternative hypotheses. When assigning multiple measures of statistical significance, it

is necessary to account for the fact that decisions are made for m features simultaneously. The

q-value accomplishes this by conditioning on the fact that every feature “as or more extreme” will

also be called significant, while a local false discovery rate does not. However, the latter quantity

clearly provides very useful information, and ideally one would have both estimates available for

the analysis of a genome-wide study.

Discussion

We have proposed the q-value as a useful false discovery rate based measure of significance for

genome-wide studies. The methodology we have proposed is the only methodology theoretically

shown to be conservative (over all q-values) in situations plausibly encountered in genomics (see

Remark D of the Appendix and [10]). The proposed methodology is easy to implement and inter-

pret, and it is fully automated. The original FDR methodology [5] is too conservative for genomics

applications since it assumes π0 = 1. For example, controlling the FDR at 0.03, 0.05, or 0.07 in the

expression data [14] finds 80, 160, or 231 significant genes, respectively, using our proposed method.

The methodology in [5] only finds 21, 88, or 153, respectively, indicating this earlier method’s esti-

mates are too conservative and result in a substantial loss of power. The approach in [5] also forces

one to choose a single acceptable FDR level before any data are seen, which is often going to be

impractical and too restrictive.
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The q-value of a particular feature in a genome-wide data set is the expected proportion of false

positives incurred when calling that feature significant. One may use the q-values as an exploratory

guide for which features to investigate further. One may also take all features with q-values less

than or equal to some threshold α to attain a false discovery rate less than or equal to α. Most

importantly, a systematic use of q-values in genome-wide tests of significance will yield a clear

balance of false positives to true positive results and give a standard measure of significance that

can be universally interpreted. The methodology we presented also provides an estimate π̂0 of

the proportion of features following the null hypothesis. The quantity π̂1 = 1 − π̂0 estimates a

lower bound on the proportion of truly alternative features. For example, among the 3170 genes

we examined from [14], we found that at least 33% are differentially expressed between BRCA1-

mutation-positive tumors and BRCA2-mutation-positive tumors. Similar estimates from the other

examples we considered would be interesting to compute.

The software qvalue can be downloaded at http://genomine.org/qvalue/. This program

takes a list of p-values and computes their q-values and π̂0. A version of Figure 2 is also generated.

Appendix

Remark A. FDR, pFDR, and the Q-value

In this article, we have used “false discovery rate” and FDR = E[F/S] somewhat loosely. It will

almost always be the case that S = 0 with positive probability, which implies that E[F/S] is

undefined. The quantity E[F/S|S > 0] · Pr(S > 0) was proposed as a solution to this problem [5],

which is the result of setting F/S = 0 whenever S = 0 in the original E[F/S]. This quantity is

technically called the false discovery rate (FDR) in the statistics literature. In our case we want

to place a measure of significance on each feature, which is done under the assumption that the

feature is called significant. Thus, the inclusion of Pr(S > 0) is somewhat awkward. An alternative

quantity, called the positive false discovery rate (pFDR), was recently proposed [3], which is simply

defined as pFDR = E[F/S|S > 0]. The q-value is most technically defined as the minimum pFDR

at which the feature can be called significant [3]. Since m is large in genome-wide studies, we have

that Pr(S > 0) ≈ 1 and FDR ≈ pFDR ≈ E[F ]/E[S], so the distinction is not crucial here. Also,

the estimate we use is easily motivated for either quantity [4, 10].

Suppose that each feature’s statistic probabilistically follows a random mixture of a null dis-

tribution and an alternative distribution. Then under a fixed significance rule, the pFDR can be

written as Pr(feature i is truly null | feature i is significant), for any i = 1, . . . ,m [3]. Similarly,

the false positive rate can be written as Pr(feature i is significant | feature i is truly null), for any

i = 1, 2, . . . ,m. Notice that the similarity between the pFDR and false positive rate – the argu-
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ments have simply been swapped in the conditional probabilities. This connection is the motivation

for calling our proposed quantity “q-value.” Indeed, the p-value of a feature is technically defined

to be the minimum possible false positive rate when calling that feature significant [25]. Likewise,

the q-value is based on the minimum possible pFDR.

Remark B. General Algorithm for Estimating Q-values

There is a trade-off between bias and variance in choosing the λ to use in π̂0(λ). For well formed

p-values, it should be the case that the bias of π̂0(λ) decreases with increasing λ, the bias being the

smallest when λ → 1 [4]. Therefore, the method we use here is to estimate limλ→1 π̂0(λ) = π̂0(1).

In doing so, we will borrow strength across the π̂0(λ) over a range of λ, giving an implicit balance

between bias and variance.

Consider Figure 3, where we have plotted π̂0(λ) versus λ for λ = 0, 0.01, 0.02, . . . , 0.95. By

fitting a natural cubic spline to these data (solid line), we have estimated the overall trend of π̂0(λ)

as λ increases. We purposely set the degrees of freedom of the natural cubic spline to 3; this means

we limit its curvature to be like a quadratic function, which is suitable for our purposes. It can be

seen from Figure 3 that the natural cubic spline fits the points quite well. The natural cubic spline

evaluated at λ = 1 is our final estimate of π0. For a variety of simulations and forms of dependence

(data not shown), this method performed well, often eliminating all bias in π̂0.

*** Figure 3 about here. ***

The following is the general algorithm for estimating q-values from a list of p-values.

1. Let p(1) ≤ p(2) ≤ . . . ≤ p(m) be the ordered p-values. This also denotes the ordering of the

features in terms of their evidence against the null hypothesis.

2. For a range of λ, say R = {0, 0.01, 0.02, . . . , 0.95}, calculate

π̂0(λ) =
#{pj > λ}
m(1− λ)

.

3. Let f̂ be the natural cubic spline with 3 degrees of freedom of π̂0(λ) on λ.

4. Set the estimate of π0 to be

π̂0 = f̂(1).

5. Calculate

q̂(p(m)) = min
t≥p(m)

π̂0m · t
#{pj ≤ t}

= π̂0 · p(m).
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6. For i = m− 1,m− 2, . . . , 1, calculate

q̂(p(i)) = min
t≥p(i)

π̂0m · t
#{pj ≤ t}

= min
(

π̂0m · p(i)

i
, q̂(p(i+1))

)
.

7. The estimated q-value for the ith most significant feature is q̂(p(i)).

Remark C. Analysis of the Hedenfalk et al. Data

The data from [14] can be obtained at http://research.nhgri.nih.gov/microarray/NEJM_

Supplement/. The data consist of 3226 genes on n1 = 7 BRCA1 arrays and n2 = 8 BRCA2

arrays, along with some arrays from sporadic breast cancer which we did not use. If any gene had

one or more measurement exceeding 20, then this gene was eliminated. A value of 20 is several

IQR’s (interquartile range) away from the IQR of all the data, and did not seem trustworthy for

this example. This left m = 3170 genes.

We tested each gene for differential expression between these two tumor types by using a two-

sample t-statistic. Let the log2 expression value from the jth array and the ith gene be denoted by

xij . Then xi2 = 1
n2

∑
j∈BRCA2 xij and s2

i2 = 1
n2−1

∑
j∈BRCA2 (xij − xi2)

2 are the sample mean and

variance for gene i among the arrays taken from BRCA2 tumors. We can similarly define xi1 and

s2
i1 to be the sample mean and variance for the ith gene among the BRCA1 tumor arrays. The

two sample t-statistic for the ith gene, allowing for the possibility that the tumors have different

variances, is then

ti =
xi2 − xi1√

s2
i1

n1
+ s2

i2
n2

for i = 1, 2, . . . , 3170.

We next calculated null versions of t1, t2, . . . , t3170 when there is no differential gene expression.

Since it is not clearly valid to assume that the ti follow a t distribution, we calculate these by

a permutation method. Consider all possible ways to assign n = 15 arrays to n1 = 7 arrays

from BRCA1 and n2 = 8 arrays from BRCA2. Under the assumption that there is no differential

gene expression, the t-statistic should have the same distribution regardless of how we make these

assignments. Specifically, the labels on the arrays are randomly scrambled, and the t-statistics are

recomputed. Therefore, for B = 100 permutations of the array labels we get a set of null statistics

t0b
1 , . . . , t0b

3170, b = 1, . . . B. The p-value for gene i, i = 1, 2, . . . , 3170 was calculated by

pi =
B∑

b=1

#{j : |t0b
j | ≥ |ti|, j = 1, . . . , 3170}

3170 ·B
.

We estimated the q-values for differential gene expression between the BRCA1 and BRCA2 tumors

using the above algorithm. All results, including the computer code used to analyze the data can

be found at http://genomine.org/qvalue/results.html.
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Remark D. Theoretical Properties

Several mathematical results hold under “weak dependence” of the p-values (or features in the

genome). These mathematical results indicate that our method yields conservative q-value esti-

mates. The conservative property is desirable because one does not want to underestimate the true

q-values (for the same reason one would not want to underestimate a p-value).

Suppose that with probability 1, we have S(t)/m → G(t) and F (t)/m0 → G0(t) for each

t ∈ [0, 1] as m → ∞, where G and G0 are continuous functions. In words, this says that the

empirical distribution functions of the observed p-values and null p-values converge point-wise to

some continuous functions. Weak dependence is defined as dependence that allows this pointwise

convergence. (As a rule of thumb, the more local the dependence is, the more likely it is to meet

the weak the dependence criterion.) Also suppose that G0(t) ≤ t (i.e., uniform distribution or more

conservative), and that m0/m converges. If we constrain π̂0 ≥ minλ∈R π̂0(λ) (which should usually

be the case), then it can be shown that for any δ > 0,

lim
m→∞

min
pi≥δ

[q̂(pi)− q-value(pi)] ≥ 0.

This means that the estimated q-values are simultaneously conservative for the true q-values, even

when taking the worst case scenario over [δ, 1] for arbitrarily small δ. Also, we can conclude that

lim
m→∞

#{false positive q̂(pi) ≤ α}
#{q̂(pi) ≤ α}

≤ α

which means that if we call all genes with q-values less than or equal to α, then in the long run the

false discovery rate will be less than or equal to α. The proofs of these claims follow from minor

modifications to some of the main results in [10].
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Table and Figure Captions

Table 1: Possible outcomes from thresholding m features for significance.

Figure 1: A density histogram of the 3170 p-values from the Hedenfalk et al. data. The dashed

line is the density histogram we would expect if all genes were null (not differentially expressed).

The dotted line is at the height of our estimate of the proportion of null p-values.

Figure 2: Results from the Hedenfalk et al. data. (a) The q-values of the genes versus their

respective t-statistics. (b) The q-values versus their respective p-values. (c) The number of genes

occurring on the list up through each q-value versus the respective q-value. (d) The expected

number of false positive genes versus the total number of significant genes given by the q-values.

Figure 3: The π̂0(λ) versus λ for the Hedenfalk et al. data. The solid line is a natural cubic spline

fit to these points to estimate π̂0(λ = 1).
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Table 1:

Called Called

Significant Not Significant Total

Null True F m0 − F m0

Alternative True T m1 − T m1

Total S m− S m
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